Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1997 Oct;273(4):E751-8.
doi: 10.1152/ajpendo.1997.273.4.E751.

Induction of NO and prostaglandin E2 in osteoblasts by wall-shear stress but not mechanical strain

Affiliations
Comparative Study

Induction of NO and prostaglandin E2 in osteoblasts by wall-shear stress but not mechanical strain

R Smalt et al. Am J Physiol. 1997 Oct.

Abstract

The nature of the stimulus sensed by bone cells during mechanical usage has not yet been determined. Because nitric oxide (NO) and prostaglandin (PG) production appear to be essential early responses to mechanical stimulation in vivo, we used their production to compare the responsiveness of bone cells to strain and fluid flow in vitro. Cells were incubated on polystyrene film and subjected to unidirectional linear strains in the range 500-5,000 microstrain (microepsilon). We found no increase in NO or PGE2 production after loading of rat calvarial or long bone cells, MC3T3-E1, UMR-106-01, or ROS 17/2.8 cells. In contrast, exposure of osteoblastic cells to increased fluid flow induced both PGE2 and NO production. Production was rapidly induced by wall-shear stresses of 148 dyn/cm2 and was observed in all the osteoblastic populations used but not in rat skin fibroblasts. Fluid flow appeared to act through an increase in wall-shear stress. These data suggest that mechanical loading of bone is sensed by osteoblastic cells through fluid flow-mediated wall-shear stress rather than by mechanical strain.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources