Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Oct;273(4):L715-25.
doi: 10.1152/ajplung.1997.273.4.L715.

GM-CSF enhances lung growth and causes alveolar type II epithelial cell hyperplasia in transgenic mice

Affiliations

GM-CSF enhances lung growth and causes alveolar type II epithelial cell hyperplasia in transgenic mice

J A Huffman Reed et al. Am J Physiol. 1997 Oct.

Abstract

The human surfactant protein (SP)-C gene promoter was used to direct expression of mouse granulocyte macrophage colony-stimulating factor (GM-CSF; SP-C-GM mice) in lung epithelial cells in GM-CSF-replete (GM+/+) or GM-CSF null mutant (GM-/-) mice. Lung weight and volume were significantly increased in SP-C-GM mice compared with GM+/+ or GM-/- control mice. Immunohistochemical staining demonstrated marked type II cell hyperplasia, and immunofluorescent labeling for proliferating cell nuclear antigen was increased in type II cells of SP-C-GM mice. Abundance of type II cells per mouse lung was increased three- to fourfold in SP-C-GM mice compared with GM+/+ and GM-/- mice. GM-CSF increased bromodeoxyuridine labeling of isolated type II cells in vitro. Type II cells, alveolar macrophages, and endothelial and bronchiolar epithelial cells were stained by antibodies to the GM-CSF receptor alpha-subunit in both GM+/+ mice and GM-CSF gene-targeted mice that are also homozygous for the SP-C-GM transgene. High levels of GM-CSF expression in type II cells of transgenic mice increased lung size and caused type II cell hyperplasia, demonstrating an unexpected role for the molecule in the regulation of type II cell proliferation and differentiation.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources