Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997;23(7):980-5.
doi: 10.1016/s0891-5849(97)00126-3.

Identification of possible reactive oxygen species involved in ultraviolet radiation-induced oxidative DNA damage

Affiliations

Identification of possible reactive oxygen species involved in ultraviolet radiation-induced oxidative DNA damage

X Zhang et al. Free Radic Biol Med. 1997.

Abstract

We have previously demonstrated that each region of the ultraviolet (UV) spectrum (UVA, UVB, and UVC) induces the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) in purified calf thymus DNA and HeLa cells in a fluence-dependent manner. In the present study, we further characterize the possible reactive oxygen species (ROS) that are involved in the induction of 8-oxodGuo by UV radiation. Sodium azide, a singlet oxygen (1O2) scavenger though its quenching effect on HO. was also reported, inhibited 8-oxodGuo production in calf thymus DNA exposed to UVA, UVB, or UVC in a concentration-dependent fashion with maximal quenching effect of over 90% at a concentration of 10 mM. Catalase, at a concentration of 50 U/ml, reduced the yields of UVA- and UVB-induced 8-oxodGuo formation by approximately 50%, but had little effect on UVC-induced 8-oxodGuo production. In contrast, 50 U/ml of superoxide dismutase (SOD) did not affect induction of 8-oxodGuo by any portion of the UV spectrum. Hydroxyl radical (HO.) scavengers mannitol and dimethylsulfoxide (DMSO) moderately reduced the levels of 8-oxodGuo induced by UVA and UVB, but not those by UVC. Instead, mannitol and DMSO enhanced the formation of 8-oxodGuo induced by UVC. These results suggest that certain types of ROS are involved in UV-induced 8-oxodGuo formation with 1O2 playing the predominant role throughout the UV spectrum. Except for UVC, other ROS such as hydrogen peroxide (H2O2) and HO. may also be involved in UVA- and UVB-induced oxidative DNA damage. Superoxide anion appears not to participate in UV-induced oxidation of guanosine in calf thymus DNA, as SOD did not display any quenching effects.

PubMed Disclaimer

Publication types

LinkOut - more resources