Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1997 Oct;59(7):1118-40.
doi: 10.3758/bf03205526.

Attentional resources in timing: interference effects in concurrent temporal and nontemporal working memory tasks

Affiliations
Comparative Study

Attentional resources in timing: interference effects in concurrent temporal and nontemporal working memory tasks

S W Brown. Percept Psychophys. 1997 Oct.

Abstract

Three experiments examined interference effects in concurrent temporal and nontemporal tasks. The timing task in each experiment required subjects to generate a series of 2- or 5-sec temporal productions. The nontemporal tasks were pursuit rotor tracking (Experiment 1), visual search (Experiment 2), and mental arithmetic (Experiment 3). Each nontemporal task had two levels of difficulty. All tasks were performed under both single- and dual-task conditions. A simple attentional allocation model predicts bidirectional interference between concurrent tasks. The main results showed the classic interference effect in timing. That is, the concurrent nontemporal tasks caused temporal productions to become longer (longer productions represent a shortening of perceived time) and/or more variable than did timing-only conditions. In general, the difficult version of each nontemporal task disrupted timing more than the easier version. The timing data also exhibited a serial lengthening effect, in which temporal productions became longer across trials. Nontemporal task performance showed a mixed pattern. Tracking and visual search were essentially unaffected by the addition of a timing task, whereas mental arithmetic was disrupted by concurrent timing. These results call for a modification of the attentional allocation model to incorporate the idea of specialized processing resources. Two major theoretical frameworks--multiple resource theory and the working memory model--are critically evaluated with respect to the resource demands of timing and temporal/nontemporal dual-task performance.

PubMed Disclaimer

Publication types

LinkOut - more resources