Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Oct;273(4):H2044-61.
doi: 10.1152/ajpheart.1997.273.4.H2044.

Left ventricular pressure response to small-amplitude, sinusoidal volume changes in isolated rabbit heart

Affiliations

Left ventricular pressure response to small-amplitude, sinusoidal volume changes in isolated rabbit heart

K B Campbell et al. Am J Physiol. 1997 Oct.

Abstract

The objective was to determine the dynamics of contractile processes from pressure responses to small-amplitude, sinusoidal volume changes in the left ventricle of the beating heart. Hearts were isolated from 14 anesthetized rabbits and paced at 1 beats/s. Volume was perturbed sinusoidally at four frequencies (f) (25, 50, 76.9, and 100 Hz) and five amplitudes (0.50, 0.75, 1.00, 1.25, and 1.50% of baseline volume). A prominent component of the pressure response occurred at the f of perturbation [infrequency response, delta Pf(t)]. A model, based on cross-bridge mechanisms and containing both pre- and postpower stroke states, was constructed to interpret delta Pf(t). Model predictions were that delta Pf(t) consisted of two parts: a part with an amplitude rising and falling in proportion to the pressure around that which delta Pf(t) occurred [Pr(t)], and a part with an amplitude rising and falling in proportion to the derivative of Pr(t) with time. Statistical analysis revealed that both parts were significant. Additional model predictions concerning response amplitude and phase were also confirmed statistically. The model was further validated by fitting simultaneously to all delta Pf(t) over the full range of f and delta V in a given heart. Residual errors from fitting were small (R2 = 0.978) and were not systematically distributed. Elaborations of the model to include noncontractile series elastance and distortion-dependent cross-bridge detachment did not improve the ability to represent the data. We concluded that the model could be used to identify cross-bridge rate constants in the whole heart from responses to 25- to 100-Hz sinusoidal volume perturbations.

PubMed Disclaimer

Similar articles

Publication types

LinkOut - more resources