Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1997 Oct 15;80(8 Suppl):1546-56.
doi: 10.1002/(sici)1097-0142(19971015)80:8+<1546::aid-cncr4>3.3.co;2-r.

Mechanisms of bone metastasis

Affiliations
Review

Mechanisms of bone metastasis

G R Mundy. Cancer. .

Abstract

Solid cancers metastasize to bone by a multistep process that involves interactions between tumor cells and normal host cells. Some tumors, most notably breast and prostate carcinomas, grow avidly in bone because the bone microenvironment provides a favorable soil. In the case of breast carcinoma, the final step in bone metastasis (namely bone destruction) is mediated by osteoclasts that are stimulated by local production of the tumor peptide parathyroid hormone-related peptide (PTH-rP), whereas prostate carcinomas stimulate osteoblasts to make new bone. Production of PTH-rP by breast carcinoma cells in bone is enhanced by growth factors produced as a consequence of normal bone remodeling, particularly activated transforming growth factor-beta (TGF-beta). Thus, a vicious cycle exists in bone between production by the tumor cells of mediators such as PTH-rP and subsequent production by bone of growth factors such as TGF-beta, which enhance PTH-rP production. The metastatic process can be interrupted either by neutralization of PTH-rP or by rendering the tumor cells unresponsive to TGF-beta, both of which can be accomplished experimentally. The osteoclast is another available site for therapeutic intervention in the bone metastatic process. Osteoclasts can be inhibited by drugs such as the new-generation bisphosphonates; as a consequence of this inhibition, there is a marked reduction in the skeletal events associated with metastatic cancer to bone, such as pain, fracture, and hypercalcemia. However and possibly even more importantly, there is also a reduction of tumor burden in bone. In experimental situations, this has clearly been shown to affect not only morbidity but also survival. The precise mechanism by which bisphosphonates inhibit osteoclasts is still unclear and may represent a combination of inhibition of osteoclast formation as well as increased apoptosis in mature osteoclasts. However, studies with potent bisphosphonates such as ibandronate, pamidronate, and risedronate have clearly documented that reduction of bone turnover and osteoclast activity leads to beneficial effects not only on skeletal complications associated with metastatic cancer, but also on tumor burden in bone.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms