Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1997 Oct 15;80(8 Suppl):1581-7.
doi: 10.1002/(sici)1097-0142(19971015)80:8+<1581::aid-cncr8>3.3.co;2-8.

Mechanisms of the development of osteoblastic metastases

Affiliations
Review

Mechanisms of the development of osteoblastic metastases

D Goltzman. Cancer. .

Abstract

Although several neoplasms may produce osteoblastic metastases, carcinoma of the prostate is by far the most common. Biochemical and histologic studies indicate that osteolysis also is a manifestation of prostate carcinoma. Furthermore, factors such as parathyroid hormone-related peptide, which mediate osteolysis in other cancers, also appear to be operative in the bone breakdown induced by prostate carcinoma. However, the most unique skeletal effect of this tumor is its consistent capacity to stimulate osteoblasts to deposit new bone. Several bone growth factors have been detected in prostatic tissue and may contribute to this process. These include transforming growth factor-beta, fibroblast growth factor, and bone morphogenetic proteins. The author isolated an amino-terminal fragment (ATF) of the protease urokinase (uPA) from the conditioned medium of the prostate carcinoma cell line PC-3 and demonstrated that this fragment has mitogenic activity for osteoblastic cells. The activity appears to reside in an epidermal growth factor-like growth factor domain (GFD) within the ATF. Subsequently, the author cloned the rat uPA receptor (uPAR). uPAR is known to bind the ATF and can permit the uPA molecule to exhibit focal proteolysis. It was shown that the ATF also can induce c-myc, c-jun, and c-fos in osteoblastic cells. This effect of ATF can be mimicked by the GFD and suggests that this signalling pathway in osteoblasts is via the uPAR. Consequently, the uPA molecule may contribute to growth factor effects in osteoblasts via the NH2-terminal fragment and to tumor invasiveness via its COOH-terminal proteolytic domain. This scenario is supported by results from studies with uPA-overexpressing prostate carcinoma cells in rats. Additional studies will be required to further define the mechanisms of interaction of prostate carcinoma and other cancers with bone but each site of molecular interaction may provide a therapeutic window for curtailing the effects of these tumors on the skeleton.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources