Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Dec;158(6):2323-8.
doi: 10.1016/s0022-5347(01)68243-0.

Controlled, forced collapse of cavitation bubbles for improved stone fragmentation during shock wave lithotripsy

Affiliations

Controlled, forced collapse of cavitation bubbles for improved stone fragmentation during shock wave lithotripsy

P Zhong et al. J Urol. 1997 Dec.

Abstract

The feasibility of using controlled, forced collapse of cavitation bubbles for improved stone fragmentation during shock wave lithotripsy was demonstrated using microsecond tandem shockwave pulses. High-speed photography revealed that a secondary shock wave, released in less than 500 microseconds (microsec.) following a lithotripter-generated shock wave, can be used to control and force the collapse of cavitation bubbles toward target concretions. This timely enforced shockwave-bubble interaction was found to greatly enhance the cavitational activity near the stone surface, with a resultant up to 43% increment in stone fragmentation. Since most of the cavitation energy is directed and concentrated toward the target stones and fewer shock waves are needed for successful stone comminution, tissue injury associated with this new lithotripsy procedure may also be reduced. This novel concept of shock wave lithotripsy may be used to improve the treatment efficiency and safety of existing clinical lithotripters, as well as in the design of new shock wave lithotripters.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources