Controlled, forced collapse of cavitation bubbles for improved stone fragmentation during shock wave lithotripsy
- PMID: 9366384
- DOI: 10.1016/s0022-5347(01)68243-0
Controlled, forced collapse of cavitation bubbles for improved stone fragmentation during shock wave lithotripsy
Abstract
The feasibility of using controlled, forced collapse of cavitation bubbles for improved stone fragmentation during shock wave lithotripsy was demonstrated using microsecond tandem shockwave pulses. High-speed photography revealed that a secondary shock wave, released in less than 500 microseconds (microsec.) following a lithotripter-generated shock wave, can be used to control and force the collapse of cavitation bubbles toward target concretions. This timely enforced shockwave-bubble interaction was found to greatly enhance the cavitational activity near the stone surface, with a resultant up to 43% increment in stone fragmentation. Since most of the cavitation energy is directed and concentrated toward the target stones and fewer shock waves are needed for successful stone comminution, tissue injury associated with this new lithotripsy procedure may also be reduced. This novel concept of shock wave lithotripsy may be used to improve the treatment efficiency and safety of existing clinical lithotripters, as well as in the design of new shock wave lithotripters.
Similar articles
-
Tandem shock wave cavitation enhancement for extracorporeal lithotripsy.Phys Med Biol. 2002 Nov 21;47(22):3945-57. doi: 10.1088/0031-9155/47/22/303. Phys Med Biol. 2002. PMID: 12476975
-
Improvement of stone fragmentation during shock-wave lithotripsy using a combined EH/PEAA shock-wave generator-in vitro experiments.Ultrasound Med Biol. 2000 Mar;26(3):457-67. doi: 10.1016/s0301-5629(99)00124-6. Ultrasound Med Biol. 2000. PMID: 10773377
-
[Increased fragmentation efficiency by enhancement of cavitation for extracorporal shock wave lithotripsy].Z Med Phys. 2005;15(1):53-8. doi: 10.1078/0939-3889-00241. Z Med Phys. 2005. PMID: 15830785 German.
-
Focused Ultrasound and Lithotripsy.Adv Exp Med Biol. 2016;880:113-29. doi: 10.1007/978-3-319-22536-4_7. Adv Exp Med Biol. 2016. PMID: 26486335 Review.
-
Effect of modification of shock-wave delivery on stone fragmentation.Curr Opin Urol. 2006 Mar;16(2):83-7. doi: 10.1097/01.mou.0000193374.29942.46. Curr Opin Urol. 2006. PMID: 16479209 Review.
Cited by
-
Dual-head lithotripsy in synchronous mode: acute effect on renal function and morphology in the pig.BJU Int. 2007 May;99(5):1134-42. doi: 10.1111/j.1464-410X.2006.06736.x. Epub 2007 Feb 19. BJU Int. 2007. PMID: 17309558 Free PMC article.
-
Modelling single- and tandem-bubble dynamics between two parallel plates for biomedical applications.J Fluid Mech. 2013 Feb 1;716:10.1017/jfm.2012.526. doi: 10.1017/jfm.2012.526. J Fluid Mech. 2013. PMID: 24293683 Free PMC article.
-
MODELING MICROBUBBLE DYNAMICS IN BIOMEDICAL APPLICATIONS().J Hydrodynam B. 2012 Apr;24(2):169-183. doi: 10.1016/S1001-6058(11)60232-1. Epub 2012 May 30. J Hydrodynam B. 2012. PMID: 22833696 Free PMC article.
-
Enhanced Shock Scattering Histotripsy With Pseudomonopolar Ultrasound Pulses.IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Jul;66(7):1185-1197. doi: 10.1109/TUFFC.2019.2911289. Epub 2019 Apr 15. IEEE Trans Ultrason Ferroelectr Freq Control. 2019. PMID: 30990430 Free PMC article.
-
Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shockwaves.J Endourol. 2003 Sep;17(7):435-46. doi: 10.1089/089277903769013568. J Endourol. 2003. PMID: 14565872 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources