Identification of four distinct pools of catenins in mammalian cells and transformation-dependent changes in catenin distributions among these pools
- PMID: 9368032
- DOI: 10.1074/jbc.272.47.29652
Identification of four distinct pools of catenins in mammalian cells and transformation-dependent changes in catenin distributions among these pools
Abstract
Catenins are cytoplasmic proteins that were initially identified in a complex with cadherins, a superfamily of transmembrane glycoproteins important for cell adhesion in normal and disease states. We have used gel filtration to identify four complexes of catenins in extracts from normal and transformed epithelial cells. In normal Madin-Darby canine kidney epithelial cells, a significant fraction of alpha- and beta-catenin and plakoglobin co-elute with cadherin in a high molecular weight complex (complex I). A portion of alpha-catenin and the remainder of beta-catenin and plakoglobin co-elute in a high molecular weight complex that does not contain cadherin (complex II). The remainder of alpha-catenin elutes in a low molecular weight fraction (complex III). In extracts from two colon carcinoma cell lines, HCT116 and SW480, beta-catenin elutes in an additional low molecular weight pool (complex IV) not present in Madin-Darby canine kidney cell extracts. In two subclones derived from SW480 cells, SW-E8 and SW-R2, beta-catenin is distributed evenly between high and low molecular weight pools in SW-E8 cells, whereas it elutes primarily in the low molecular weight pool (complex IV) in SW-R2 cells. These changes in beta-catenin elution profiles correlate with an increase in transformed phenotype and decreased cell-cell adhesion in the SW-R2 cells.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
