Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1995 Mar;2(2):132-8.
doi: 10.1097/00062752-199502020-00005.

Erythrocyte dehydration in pathophysiology and treatment of sickle cell disease

Affiliations
Review

Erythrocyte dehydration in pathophysiology and treatment of sickle cell disease

C Brugnara. Curr Opin Hematol. 1995 Mar.

Abstract

A prominent feature of sickle cell disease is the presence of cells with markedly increased sickle cell hemoglobin concentration, as a consequence of the loss of potassium, chloride, and water from the erythrocyte. Because of the extreme dependency of the kinetic of polymerization on sickle cell hemoglobin concentration, these dehydrated erythrocytes have an increased tendency to polymerize and sickle. Thus blockade of the loss of potassium from the erythrocyte should prevent the increase in sickle cell hemoglobin concentration and reduce sickling. The availability of this potential therapeutic option is based on a detailed knowledge of the mechanisms leading to cell dehydration. Two ion transport pathways, the K-Cl cotransport and the Ca(2+)-activated K+ channel, play a prominent role in the dehydration of sickle erythrocytes. Possible therapeutic strategies include inhibition of K-Cl cotransport by increasing erythrocyte Mg2+ content and inhibition of the Ca(2+)-activated K channel by oral administration of clotrimazole.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources