Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997;76(10):1315-21.
doi: 10.1038/bjc.1997.554.

Kinetics of mouse jejunum radiosensitization by 2',2'-difluorodeoxycytidine (gemcitabine) and its relationship with pharmacodynamics of DNA synthesis inhibition and cell cycle redistribution in crypt cells

Affiliations
Free PMC article

Kinetics of mouse jejunum radiosensitization by 2',2'-difluorodeoxycytidine (gemcitabine) and its relationship with pharmacodynamics of DNA synthesis inhibition and cell cycle redistribution in crypt cells

V Grégoire et al. Br J Cancer. 1997.
Free PMC article

Erratum in

  • Br J Cancer 1998 Mar;77(6):1026

Abstract

Gemcitabine (dFdC), a deoxycitidine nucleoside analogue, inhibits DNA synthesis and repair of radiation-induced chromosome breaks in vitro, radiosensitizes various human and mouse cells in vitro and shows clinical activity in several tumours. Limited data are however available on the effect of dFdC on normal tissue radiotolerance and on factors associated with dFdC's radiosensitization in vivo. The purpose of this study was to determine the effect of dFdC on mouse jejunum radiosensitization and to investigate the kinetics of DNA synthesis inhibition and cell cycle redistribution in the jejunal crypts as surrogates of radiosensitization in vivo. For assessment of jejunum tolerance, the mice were irradiated on the whole body with 60Co gamma rays (3.5-18 Gy single dose) with or without prior administration of dFdC (150 mg kg-1). Jejunum tolerance was evaluated by the number of regenerated crypts per circumference at 86 h after irradiation. For pharmacodynamic studies, dFdC (150 or 600 mg kg-1) was given i.p. and jejunum was harvested at various times (0-48 h), preceded by a pulse BrdUrd labelling. Labelled cells were detected by immunohistochemistry on paraffin-embedded sections. DNA synthesis was inhibited within 3 h after dFdC administration. After an early wave of apoptosis (3-6 h), DNA synthesis recovered by 6 h, and crypt cells became synchronized. At 48 h, the labelling index returned almost to background level. At a level of 40 regenerated crypts, radiosensitization was observed for a 3 h time interval (dose modification factor of 1.3) and was associated with DNA synthesis inhibition, whereas a slight radioprotection was observed for a 48-h time interval (dose modification factor of 0.9) when DNA synthesis has reinitiated. In conclusion, dFdC altered the radioresponse of the mouse jejunum in a schedule-dependent fashion. Our data tend to support the hypothesis that DNA synthesis inhibition and cell cycle redistribution are surrogates for radiosensitization. More data points are however required before a definite conclusion can be drawn.

PubMed Disclaimer

References

    1. Stem Cells. 1996 May;14(3):351-62 - PubMed
    1. Radiother Oncol. 1996 Oct;41(1):31-9 - PubMed
    1. Cancer Res. 1992 Feb 1;52(3):533-9 - PubMed
    1. Cancer Res. 1994 Jan 15;54(2):468-74 - PubMed
    1. Semin Oncol. 1995 Aug;22(4 Suppl 11):42-6 - PubMed

Publication types

LinkOut - more resources