Receptor-mediated inhibition of renal Na(+)-K(+)-ATPase is associated with endocytosis of its alpha- and beta-subunits
- PMID: 9374629
- DOI: 10.1152/ajpcell.1997.273.5.C1458
Receptor-mediated inhibition of renal Na(+)-K(+)-ATPase is associated with endocytosis of its alpha- and beta-subunits
Abstract
The mechanisms involved in receptor-mediated inhibition of Na(+)-K(+)-ATPase remain poorly understood. In this study, we evaluate whether inhibition of proximal tubule Na(+)-K(+)-ATPase activity by dopamine is linked to its removal from the plasma membrane and internalization into defined intracellular compartments. Clathrin-coated vesicles were isolated by sucrose gradient centrifugation and negative lectin selection, and early and late endosomes were separated on a flotation gradient. Inhibition of Na(+)-K(+)-ATPase activity by dopamine, in contrast to its inhibition by ouabain, was accompanied by a sequential increase in the abundance of the alpha-subunit in clathrin-coated vesicles (1 min), early endosomes (2.5 min), and late endosomes (5 min), suggesting its stepwise translocation between these organelles. A similar pattern was found for the beta-subunit. The increased incorporation of both subunits in all compartments was blocked by calphostin C. The results demonstrate that the dopamine-induced decrease in Na(+)-K(+)-ATPase activity in proximal tubules is associated with internalization of its alpha- and beta-subunits into early and late endosomes via a clathrin-dependent pathway and that this process is protein kinase C dependent. The presence of Na(+)-K(+)-ATPase subunits in endosomes suggests that these compartments may constitute normal traffic reservoirs during pump degradation and/or synthesis.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
