Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Nov;273(5):L1020-8.
doi: 10.1152/ajplung.1997.273.5.L1020.

Mechanisms underlying TNF-alpha effects on agonist-mediated calcium homeostasis in human airway smooth muscle cells

Affiliations

Mechanisms underlying TNF-alpha effects on agonist-mediated calcium homeostasis in human airway smooth muscle cells

Y Amrani et al. Am J Physiol. 1997 Nov.

Abstract

We have previously shown that tumor necrosis factor (TNF)-alpha, a cytokine involved in asthma, enhances Ca2+ responsiveness to bronchoconstrictor agents in cultured human airway smooth muscle (ASM) cells. In the present study, we investigated the potential mechanism(s) by which TNF-alpha modulates ASM cell responsiveness to such agents. In human ASM cells loaded with fura 2, TNF-alpha and interleukin (IL)-1 beta significantly enhanced thrombin- and bradykinin-evoked elevations of intracellular Ca2+. In TNF-alpha-treated cells. Ca2+ responses to thrombin and bradykinin were 350 +/- 14 and 573 +/- 93 nM vs. 130 +/- 17 and 247 +/- 48 nM in nontreated cells, respectively (P < 0.0001). In IL-1 beta-treated cells, the Ca2+ response to bradykinin was 350 +/- 21 vs. 127 +/- 12 nM in nontreated cells (P < 0.0001). The time course for TNF-alpha potentiation of agonist-induced Ca2+ responses requires a minimum of 6 h and was maximum after 12 h of incubation. In addition, cycloheximide, a protein synthesis inhibitor, completely blocked the potentiating effect of TNF-alpha on Ca2+ signals. We also found that TNF-alpha significantly enhanced increases in phosphoinositide (PI) accumulation induced by bradykinin. The percentage of change in PI accumulation over control was 115 +/- 8 to 210 +/- 15% in control cells vs. 128 +/- 10 to 437 +/- 92% in TNF-alpha-treated cells for 3 x 10(-9) to 3 x 10(-6) M bradykinin. The PI turnover to 10 mM NaF, a direct activator of G proteins, was also found to be enhanced by TNF-alpha. The percentage of change in PI accumulation over control increased from 280 +/- 35% in control cells to 437 +/- 92% in TNF-alpha-treated cells. Taken together, these results show that TNF-alpha can potently regulate G protein-mediated signal transduction in ASM cells by activating pathways dependent on protein synthesis. Our study demonstrates one potential mechanism underlying the enhanced Ca2+ response to bronchoconstrictor agents induced by cytokines in human ASM cells.

PubMed Disclaimer

Publication types

LinkOut - more resources