Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Oct 14;36(41):12574-82.
doi: 10.1021/bi962606z.

Phosphorylation states of microtubule-associated protein 2 (MAP2) determine the regulatory role of MAP2 in microtubule dynamics

Affiliations

Phosphorylation states of microtubule-associated protein 2 (MAP2) determine the regulatory role of MAP2 in microtubule dynamics

T J Itoh et al. Biochemistry. .

Abstract

Phosphorylation-dependent regulation of microtubule-stabilizing activities of microtubule-associated protein 2 (MAP2) was examined using optical microscopy. MAP2, purified from mammalian brain, was phosphorylated by either cAMP-dependent protein kinase (PKA) or cyclin B-dependent cdc2 kinase. Using PKA, 15 mol of phosphoryl groups was incorporated per mole of MAP2, but about 70% of the phosphates was distributed to the projection region. Using cdc2 kinase, 7-10 mol of phosphoryl groups was incorporated per mole of MAP2, and more than 60% of the phosphates was distributed to the microtubule-binding region. Both types of phosphorylation similarly reduced binding activity of MAP2 onto microtubules. Direct observation of individual microtubules using dark-field microscopy showed that interconversion between the polymerization phase and the depolymerization phase was repeated in both unphosphorylated and PKA-phosphorylated MAP2. In cdc2 kinase-phosphorylated MAP2, however, the phase transition from depolymerization to polymerization occurred with difficulty, with the result being that the half-life of individual microtubules was as short as in the absence of MAP2. Examination of spontaneous polymerization of microtubules using dark-field microscopy showed that the microtubule-nucleating activity of MAP2 was reduced by PKA-dependent phosphorylation and was completely abolished by cdc2 kinase-dependent phosphorylation. These observations show that cdc2 kinase-dependent phosphorylation inhibits both the microtubule-stabilizing activity and the microtubule-nucleating activity of MAP2, while PKA-dependent phosphorylation affects only the microtubule-nucleating activity of MAP2.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources