Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Nov 20;390(6657):305-8.
doi: 10.1038/36889.

Caenorhabditis elegans CED-9 protein is a bifunctional cell-death inhibitor

Affiliations

Caenorhabditis elegans CED-9 protein is a bifunctional cell-death inhibitor

D Xue et al. Nature. .

Abstract

The Caenorhabditis elegans gene ced-9 prevents cells from undergoing programmed cell death and encodes a protein similar to the mammalian cell-death inhibitor Bcl-2. We show here that the CED-9 protein is a substrate for the C. elegans cell-death protease CED-3, which is a member of a family of cysteine proteases first defined by CED-3 and human interleukin-1beta converting enzyme (ICE). CED-9 can be cleaved by CED-3 at two sites near its amino terminus, and the presence of at least one of these sites is important for complete protection by CED-9 against cell death. Cleavage of CED-9 by CED-3 generates a carboxy-terminal product that resembles Bcl-2 in sequence and in function. Bcl-2 and the baculovirus protein p35, which inhibits cell death in different species through a mechanism that depends on the presence of its cleavage site for the CED-3/ICE family of proteases, inhibit cell death additively in C. elegans. Our results indicate that CED-9 prevents programmed cell death in C. elegans through two distinct mechanisms: first, CED-9 may, by analogy with p35, directly inhibit the CED-3 protease by an interaction involving the CED-3 cleavage sites in CED-9; second, CED-9 may directly or indirectly inhibit CED-3 by means of a protective mechanism similar to that used by mammalian Bcl-2.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources