Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Nov 20;390(6657):308-11.
doi: 10.1038/36894.

CRM1 is responsible for intracellular transport mediated by the nuclear export signal

Affiliations

CRM1 is responsible for intracellular transport mediated by the nuclear export signal

M Fukuda et al. Nature. .

Abstract

The discovery of nuclear export signals (NESs) in a number of proteins revealed the occurrence of signal-dependent transport of proteins from the nucleus to the cytoplasm. Although the consensus motif of the NESs has been shown to be a leucine-rich, short amino-acid sequence, its receptor has not been identified. A cytotoxin leptomycin B (LMB) has recently been suggested to inhibit the NES-mediated transport of Rev protein. Here we show that LMB is a potent and specific inhibitor of the NES-dependent nuclear export of proteins. Moreover, we have found a protein of relative molecular mass 110K (p110) in Xenopus oocyte extracts that binds to the intact NES but not to the mutated, non-functional NES. The binding of p110 to NES is inhibited by LMB. We show that p110 is CRM1, which is an evolutionarily conserved protein originally found as an essential nuclear protein in fission yeast and known as a likely target of LMB. We also show that nuclear export of a fission yeast protein, Dsk1, which has a leucine-rich NES, is disrupted in wild-type yeast treated with LMB or in the crm1 mutant. These results indicate that CRM1 is an essential mediator of the NES-dependent nuclear export of proteins in eukaryotic cells.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources