A flexible approach to time-varying coefficients in the Cox regression setting
- PMID: 9384623
- DOI: 10.1023/a:1009612117342
A flexible approach to time-varying coefficients in the Cox regression setting
Abstract
Research on methods for studying time-to-event data (survival analysis) has been extensive in recent years. The basic model in use today represents the hazard function for an individual through a proportional hazards model (Cox, 1972). Typically, it is assumed that a covariate's effect on the hazard function is constant throughout the course of the study. In this paper we propose a method to allow for possible deviations from the standard Cox model, by allowing the effect of a covariate to vary over time. This method is based on a dynamic linear model. We present our method in terms of a Bayesian hierarchical model. We fit the model to the data using Markov chain Monte Carlo methods. Finally, we illustrate the approach with several examples.
Similar articles
-
A simple approach to fitting Bayesian survival models.Lifetime Data Anal. 2003 Mar;9(1):5-19. doi: 10.1023/a:1021821002693. Lifetime Data Anal. 2003. PMID: 12602771 Review.
-
Flexible Bayesian modelling for survival data.Lifetime Data Anal. 1998;4(3):281-99. doi: 10.1023/a:1009673932333. Lifetime Data Anal. 1998. PMID: 9787607
-
Bayesian analysis of proportional hazards models built from monotone functions.Biometrics. 1995 Sep;51(3):843-52. Biometrics. 1995. PMID: 7548703
-
Bayesian variable selection for the Cox regression model with spatially varying coefficients with applications to Louisiana respiratory cancer data.Biom J. 2021 Dec;63(8):1607-1622. doi: 10.1002/bimj.202000047. Epub 2021 Jul 28. Biom J. 2021. PMID: 34319616
-
Multivariate parametric spatiotemporal models for county level breast cancer survival data.Lifetime Data Anal. 2005 Mar;11(1):5-27. doi: 10.1007/s10985-004-5637-1. Lifetime Data Anal. 2005. PMID: 15747587 Review.
Cited by
-
A simple approach to fitting Bayesian survival models.Lifetime Data Anal. 2003 Mar;9(1):5-19. doi: 10.1023/a:1021821002693. Lifetime Data Anal. 2003. PMID: 12602771 Review.
-
Dynamic survival models with spatial frailty.Lifetime Data Anal. 2006 Dec;12(4):441-60. doi: 10.1007/s10985-006-9020-2. Epub 2006 Sep 20. Lifetime Data Anal. 2006. PMID: 17031498
-
Time-varying effects of prognostic factors associated with disease-free survival in breast cancer.Am J Epidemiol. 2009 Jun 15;169(12):1463-70. doi: 10.1093/aje/kwp077. Epub 2009 Apr 29. Am J Epidemiol. 2009. PMID: 19403844 Free PMC article. Clinical Trial.
-
Variation over time and interdependence between disease progression and death among patients with glioblastoma on RTOG 0525.Neuro Oncol. 2015 Jul;17(7):999-1006. doi: 10.1093/neuonc/nov009. Epub 2015 Feb 16. Neuro Oncol. 2015. PMID: 25688120 Free PMC article. Clinical Trial.
-
Dynamic Bayesian adjustment of anticipatory covariates in retrospective data: application to the effect of education on divorce risk.J Appl Stat. 2020 Dec 23;49(6):1382-1401. doi: 10.1080/02664763.2020.1864812. eCollection 2022. J Appl Stat. 2020. PMID: 35707119 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources