Bivariate frailty model for the analysis of multivariate survival time
- PMID: 9384637
- DOI: 10.1007/BF00128978
Bivariate frailty model for the analysis of multivariate survival time
Abstract
Because of limitations of the univariate frailty model in analysis of multivariate survival data, a bivariate frailty model is introduced for the analysis of bivariate survival data. This provides tremendous flexibility especially in allowing negative associations between subjects within the same cluster. The approach involves incorporating into the model two possibly correlated frailties for each cluster. The bivariate lognormal distribution is used as the frailty distribution. The model is then generalized to multivariate survival data with two distinguished groups and also to alternating process data. A modified EM algorithm is developed with no requirement of specification of the baseline hazards. The estimators are generalized maximum likelihood estimators with subject-specific interpretation. The model is applied to a mental health study on evaluation of health policy effects for inpatient psychiatric care.
Similar articles
-
Dynamic frailty models based on compound birth-death processes.Biostatistics. 2015 Jul;16(3):550-64. doi: 10.1093/biostatistics/kxv002. Epub 2015 Feb 13. Biostatistics. 2015. PMID: 25681608
-
A Weibull regression model with gamma frailties for multivariate survival data.Lifetime Data Anal. 1997;3(2):123-37. doi: 10.1023/a:1009605117713. Lifetime Data Anal. 1997. PMID: 9384618
-
Correlated gamma frailty models for bivariate survival time data.Stat Methods Med Res. 2019 Oct-Nov;28(10-11):3437-3450. doi: 10.1177/0962280218803127. Epub 2018 Oct 15. Stat Methods Med Res. 2019. PMID: 30319043
-
Some recent developments for regression analysis of multivariate failure time data.Lifetime Data Anal. 1995;1(4):403-15. doi: 10.1007/BF00985452. Lifetime Data Anal. 1995. PMID: 9385112 Review.
-
Frailty models for survival data.Lifetime Data Anal. 1995;1(3):255-73. doi: 10.1007/BF00985760. Lifetime Data Anal. 1995. PMID: 9385105 Review.
Cited by
-
A semiparametric transition model with latent traits for longitudinal multistate data.Biometrics. 2008 Dec;64(4):1032-42. doi: 10.1111/j.1541-0420.2008.01011.x. Epub 2008 Mar 19. Biometrics. 2008. PMID: 18355385 Free PMC article.
-
The Association Between Rate and Severity of Exacerbations in Chronic Obstructive Pulmonary Disease: An Application of a Joint Frailty-Logistic Model.Am J Epidemiol. 2016 Nov 1;184(9):681-689. doi: 10.1093/aje/kww085. Epub 2016 Oct 13. Am J Epidemiol. 2016. PMID: 27737842 Free PMC article.
-
Using frailties in the accelerated failure time model.Lifetime Data Anal. 2001 Mar;7(1):55-64. doi: 10.1023/a:1009625210191. Lifetime Data Anal. 2001. PMID: 11280848
-
Penalized survival models for the analysis of alternating recurrent event data.Biometrics. 2020 Jun;76(2):448-459. doi: 10.1111/biom.13153. Epub 2019 Nov 11. Biometrics. 2020. PMID: 31535737 Free PMC article.
-
Dynamic random effects models for times between repeated events.Lifetime Data Anal. 2001 Dec;7(4):345-62. doi: 10.1023/a:1012544714667. Lifetime Data Anal. 2001. PMID: 11763543