Using the EM-algorithm for survival data with incomplete categorical covariates
- PMID: 9384645
- DOI: 10.1007/BF00128467
Using the EM-algorithm for survival data with incomplete categorical covariates
Abstract
Incomplete covariate data is a common occurrence in many studies in which the outcome is survival time. With generalized linear models, when the missing covariates are categorical, a useful technique for obtaining parameter estimates is the EM by the method of weights proposed in Ibrahim (1990). In this article, we extend the EM by the method of weights to survival outcomes whose distributions may not fall in the class of generalized linear models. This method requires the estimation of the parameters of the distribution of the covariates. We present a clinical trials example with five covariates, four of which have some missing values.
Similar articles
-
Estimating equations with incomplete categorical covariates in the Cox model.Biometrics. 1998 Sep;54(3):1002-13. Biometrics. 1998. PMID: 9750248
-
Likelihood methods for incomplete longitudinal binary responses with incomplete categorical covariates.Biometrics. 1999 Mar;55(1):214-23. doi: 10.1111/j.0006-341x.1999.00214.x. Biometrics. 1999. PMID: 11318157
-
Monte Carlo EM for missing covariates in parametric regression models.Biometrics. 1999 Jun;55(2):591-6. doi: 10.1111/j.0006-341x.1999.00591.x. Biometrics. 1999. PMID: 11318219
-
Maximum likelihood analysis of generalized linear models with missing covariates.Stat Methods Med Res. 1999 Mar;8(1):37-50. doi: 10.1177/096228029900800104. Stat Methods Med Res. 1999. PMID: 10347859 Review.
-
On the EM algorithm for overdispersed count data.Stat Methods Med Res. 1997 Mar;6(1):76-98. doi: 10.1177/096228029700600106. Stat Methods Med Res. 1997. PMID: 9185291 Review.
Cited by
-
Missing data in clinical studies: issues and methods.J Clin Oncol. 2012 Sep 10;30(26):3297-303. doi: 10.1200/JCO.2011.38.7589. Epub 2012 May 29. J Clin Oncol. 2012. PMID: 22649133 Free PMC article.
-
Subsample ignorable likelihood for accelerated failure time models with missing predictors.Lifetime Data Anal. 2015 Jul;21(3):457-69. doi: 10.1007/s10985-014-9304-x. Epub 2014 Aug 5. Lifetime Data Anal. 2015. PMID: 25091562
-
Failure time regression with continuous informative auxiliary covariates.J Stat Distrib Appl. 2015 Feb;2:2. doi: 10.1186/s40488-015-0026-8. Epub 2015 Feb 20. J Stat Distrib Appl. 2015. PMID: 26594610 Free PMC article.
-
Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study.BMC Med Res Methodol. 2010 Jan 19;10:7. doi: 10.1186/1471-2288-10-7. BMC Med Res Methodol. 2010. PMID: 20085642 Free PMC article.
-
Marginal regression models with a time to event outcome and discrete multiple source predictors.Lifetime Data Anal. 2006 Sep;12(3):249-65. doi: 10.1007/s10985-006-9013-1. Epub 2006 Aug 2. Lifetime Data Anal. 2006. PMID: 17021951 Free PMC article.