Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Dec 1;100(11):2842-8.
doi: 10.1172/JCI119832.

Vitamin C crosses the blood-brain barrier in the oxidized form through the glucose transporters

Affiliations

Vitamin C crosses the blood-brain barrier in the oxidized form through the glucose transporters

D B Agus et al. J Clin Invest. .

Abstract

Vitamin C concentrations in the brain exceed those in blood by 10-fold. In both tissues, the vitamin is present primarily in the reduced form, ascorbic acid. We identified the chemical form of vitamin C that readily crosses the blood-brain barrier, and the mechanism of this process. Ascorbic acid was not able to cross the blood-brain barrier in our studies. In contrast, the oxidized form of vitamin C, dehydroascorbic acid (oxidized ascorbic acid), readily entered the brain and was retained in the brain tissue in the form of ascorbic acid. Transport of dehydroascorbic acid into the brain was inhibited by d-glucose, but not by l-glucose. The facilitative glucose transporter, GLUT1, is expressed on endothelial cells at the blood-brain barrier, and is responsible for glucose entry into the brain. This study provides evidence showing that GLUT1 also transports dehydroascorbic acid into the brain. The findings define the transport of dehydroascorbic acid by GLUT1 as a mechanism by which the brain acquires vitamin C, and point to the oxidation of ascorbic acid as a potentially important regulatory step in accumulation of the vitamin by the brain. These results have implications for increasing antioxidant potential in the central nervous system.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Pharmacol Rev. 1966 Mar;18(1):61-9 - PubMed
    1. Biochim Biophys Acta. 1987 Jul 23;901(2):283-90 - PubMed
    1. J Cell Biol. 1967 Jul;34(1):207-17 - PubMed
    1. Am J Clin Nutr. 1971 Apr;24(4):432-43 - PubMed
    1. Am J Physiol. 1973 Oct;225(4):757-63 - PubMed

Publication types

MeSH terms