Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 1997 Dec;83(6):1862-6.
doi: 10.1152/jappl.1997.83.6.1862.

Atrial distension in humans during microgravity induced by parabolic flights

Affiliations
Free article
Clinical Trial

Atrial distension in humans during microgravity induced by parabolic flights

R Videbaek et al. J Appl Physiol (1985). 1997 Dec.
Free article

Abstract

The hypothesis was tested that human cardiac filling pressures increase and the left atrium is distended during 20-s periods of microgravity (microG) created by parabolic flights, compared with values of the 1-G supine position. Left atrial diameter (n = 8, echocardiography) increased significantly during microG from 26.8 +/- 1.2 to 30.4 +/- 0.7 mm (P < 0.05). Simultaneously, central venous pressure (CVP; n = 6, transducer-tipped catheter) decreased from 5.8 +/- 1.5 to 4.5 +/- 1.1 mmHg (P < 0.05), and esophageal pressure (EP; n = 6) decreased from 1.5 +/- 1.6 to -4.1 +/- 1.7 mmHg (P < 0.05). Thus transmural CVP (TCVP = CVP - EP; n = 4) increased during microG from 6.1 +/- 3. 2 to 10.4 +/- 2.7 mmHg (P < 0.05). It is concluded that short periods of microG during parabolic flights induce an increase in TCVP and left atrial diameter in humans, compared with the results obtained in the 1-G horizontal supine position, despite a decrease in CVP.

PubMed Disclaimer

Publication types

LinkOut - more resources