Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Oct;30(10):1035-40.
doi: 10.1016/s0021-9290(97)00065-1.

Force response of the fingertip pulp to repeated compression--effects of loading rate, loading angle and anthropometry

Affiliations

Force response of the fingertip pulp to repeated compression--effects of loading rate, loading angle and anthropometry

E R Serina et al. J Biomech. 1997 Oct.

Abstract

Repeated loading of the fingertips has been postulated to contribute to tendon and nerve disorders at the wrist during activities associated with prolonged fingertip loading such as typing. To fully understand the pathomechanics of these soft tissue disorders, the role of the fingertip pulp in attenuating the applied dynamic forces must be known. An experiment was conducted to characterize the response of the in vivo fingertip pulp under repeated, dynamic, compressive loadings, to identify factors that influence pulp dynamics, and to better understand the force modulation by the pulp. Twenty subjects tapped repeatedly on a flat plate with their left index finger, while the contact force and pulp displacement were measured simultaneously. Tapping trials were conducted at three fingertip contact angles from the horizontal plane (0 degree, 45 degrees, and 90 degrees) and five tapping rates (0.25, 0.5, 1, 2, and 3 Hz). The fingertip pulp responds as a viscoelastic material, exhibiting rate-dependence, hysteresis, and a nonlinear force-displacement relationship. The pulp was relatively compliant at forces less than 1 N, but stiffened rapidly with displacement at higher forces for all loading conditions. This suggests that high-frequency forces of a small magnitude (< 1 N) are attenuated by the nonlinearly stiffening pulp while these forces of larger magnitude are transmitted to the bone. Pulp response was significantly influenced by the angle of loading. Fingertip dimensions, gender, and subject age had little to no influence on pulp parameters.

PubMed Disclaimer

Publication types

LinkOut - more resources