The optical properties of lung as a function of respiration
- PMID: 9394411
- DOI: 10.1088/0031-9155/42/11/018
The optical properties of lung as a function of respiration
Abstract
Lung consists of alveoli enclosed by tissue and both structures contribute to volume-dependent scattering of light. It is the purpose of this paper to determine the volume-dependent optical properties of lung. In vivo interstitial fibre measurements of the effective attenuation coefficient mu eff at 632.8 nm differed during inspiration (mu eff = 2.5 +/- 0.5 cm-1) from that during expiration (mu eff = 3.2 +/- 0.6 cm-1). In vitro measurements on a piglet lung insufflated with oxygen from 50 to 150 ml showed the effective attenuation coefficient at 632.8 nm decreases as a function of oxygen volume in the lung (at 50 ml mu eff = 2.97 +/- 0.11 cm-1, at 100 ml mu eff = 1.50 +/- 0.07 cm-1, and at 150 ml mu eff = 1.36 +/- 0.15 cm-1). This was explained by combining scattering of alveoli (Mie theory) with optical properties of collapsed lung tissue using integrating sphere measurements. Theory and measured in vitro values showed good agreement (deviation < or = 15%). Combination of these data yields the absorption coefficient and scattering parameters of lung tissue as a function of lung volume. We conclude that the light fluence rate in lung tissue should be estimated using optical properties that include scattering by the alveoli.
Similar articles
-
Optical properties of human prostate at 732 nm measured in mediated photodynamic therapy.Photochem Photobiol. 2005 Jan-Feb;81(1):96-105. doi: 10.1562/2004-06-25-RA-216. Photochem Photobiol. 2005. PMID: 15535736 Free PMC article. Clinical Trial.
-
In vivo optical properties of normal canine prostate at 732 nm using motexafin lutetium-mediated photodynamic therapy.Photochem Photobiol. 2003 Jan;77(1):81-8. doi: 10.1562/0031-8655(2003)077<0081:ivopon>2.0.co;2. Photochem Photobiol. 2003. PMID: 12856887
-
A method for determination of the absorption and scattering properties interstitially in turbid media.Phys Med Biol. 2005 May 21;50(10):2291-311. doi: 10.1088/0031-9155/50/10/008. Epub 2005 May 5. Phys Med Biol. 2005. PMID: 15876668 Free PMC article.
-
Light dosimetry in vivo.Phys Med Biol. 1997 May;42(5):763-87. doi: 10.1088/0031-9155/42/5/003. Phys Med Biol. 1997. PMID: 9172258 Review.
-
A literature review and novel theoretical approach on the optical properties of whole blood.Lasers Med Sci. 2014 Mar;29(2):453-79. doi: 10.1007/s10103-013-1446-7. Lasers Med Sci. 2014. PMID: 24122065 Free PMC article. Review.
Cited by
-
Multimodal Diagnostics of Changes in Rat Lungs after Vaping.Diagnostics (Basel). 2023 Oct 30;13(21):3340. doi: 10.3390/diagnostics13213340. Diagnostics (Basel). 2023. PMID: 37958237 Free PMC article.
-
Optical model of the murine lung to optimize pulmonary illumination.J Biomed Opt. 2018 Mar;23(7):1-12. doi: 10.1117/1.JBO.23.7.071208. J Biomed Opt. 2018. PMID: 29573254 Free PMC article.
-
Optical oxygen saturation imaging in cellular ex vivo lung perfusion to assess lobular pulmonary function.Biomed Opt Express. 2021 Dec 14;13(1):328-343. doi: 10.1364/BOE.445021. eCollection 2022 Jan 1. Biomed Opt Express. 2021. PMID: 35154874 Free PMC article.
-
Initial non-invasive in vivo sensing of the lung using time domain diffuse optics.Sci Rep. 2024 Mar 15;14(1):6343. doi: 10.1038/s41598-024-56862-0. Sci Rep. 2024. PMID: 38491195 Free PMC article.
-
Light scattering by pulmonary alveoli and airway surface liquid using a concentric sphere model.Opt Lett. 2018 Oct 15;43(20):5001-5004. doi: 10.1364/OL.43.005001. Opt Lett. 2018. PMID: 30320804 Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials