Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Mar 1;7(3):191-201.
doi: 10.1016/s0960-9822(97)70090-3.

Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization

Affiliations
Free article

Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization

W C Colley et al. Curr Biol. .
Free article

Abstract

Background: Activation of phospholipase D (PLD) is an important but poorly understood component of receptor-mediated signal transduction responses and regulated secretion. We recently reported the cloning of the human gene encoding PLD1; this enzyme has low basal activity and is activated by protein kinase C and the small GTP-binding proteins, ADP-ribosylation factor (ARF), Rho, Rac and Cdc42. Biochemical and cell biological studies suggest, however, that additional and distinct PLD activities exist in cells, so a search was carried out for novel mammalian genes related to PLD1.

Results: We have cloned the gene for a second PLD family member and characterized the protein product, which appears to be regulated differently from PLD1: PLD2 is constitutively active and may be modulated in vivo by inhibition. Unexpectedly, PLD2 localizes primarily to the plasma membrane, in contrast to PLD1 which localizes solely to peri-nuclear regions (the endoplasmic reticulum, Golgi apparatus and late endosomes), where PLD activity has been shown to promote ARF-mediated coated-vesicle formation. PLD2 provokes cortical reorganization and undergoes redistribution in serum-stimulated cells, suggesting that it may have a role in signal-induced cytoskeletal regulation and/or endocytosis.

Conclusions: PLD2 is a newly identified mammalian PLD isoform with novel regulatory properties. Our findings suggest that regulated secretion and morphological reorganization, the two most frequently proposed biological roles for PLD, are likely to be effected separately by PLD1 and PLD2.

PubMed Disclaimer

Publication types

MeSH terms