Re-evaluation of the H+/site ratio of mitochondrial electron transport with the oxygen pulse technique
- PMID: 9396
Re-evaluation of the H+/site ratio of mitochondrial electron transport with the oxygen pulse technique
Abstract
The number of protons ejected per pair of electrons passing each energy-conserving site in the electron transport chain (the H+/site ratio) has been investigated in rat liver mitochondria by means of the oxygen pulse technique introduced by Mitchell and Moyle (1967) (Biochem. J. 105, 1147-1162). The usual H+/site values of 2.0 observed by this method were found to be substantially underestimated as a result of the influx of phosphate into the mitochondria. This was shown by three different kinds of experiments. 1. Addition of N-ethylmaleimide or mersalyl, inhibitors of mitochondrial phosphate transport, increased the H+/site ratio from 2.0 to 3.0. The dependence of this effect on the concentration of either inhibitor was identical with that for inhibition of phosphate transport. Added phosphate diminished the H+/site ratio to values below 2.0 in the absence of N-ethylmaleimide. N-Ethylmaleimide protected the elevated H+/site ratio of 3.0 against the deleterious effect of added phosphate, but did not prevent a lowering effect of weak acid anions such as 3-hydroxybutyrate. 2. Prior washing of mitochondria to remove the endogenous phosphate that leaks out during the anaerobic preincubation led to H+/site ratios near 3.0, which were not increased by N-ethylmaleimide. Addition of low concentrations of phosphate to such phosphate-depleted mitochondria decreased the H+/site ratio to 2.0; addition of N-ethylmaleimide returned the ratio to 3.0. 3. Lowering the temperature to 5 degrees, which slows down phosphate transport, led to H+/site values of 3.0 even in the absence of N-ethylmaleimide. The H+/site ratio of 3.0 observed in the absence of phosphate movements was not dependent on any narrowly limited set of experimental conditions. It occurred with either Ca2+ or K+ (in the presence of valinomycin) as mobile permeant cation. It was independent of the concentration of succinate, oxygen, mitochondria, or rotenone, additions of Ca2+, Li+, or Na+ and was independent of medium pH between 6.5 and 7.5. Inhibitors of the transport of ions or acids other than phosphate did not affect the H+/site ratio. These results indicate that re-uptake of endogenous phosphate, lost from mitochondria during anaerobic preincubation, reduces the observed H+ ejection and leads to underestimated H+/site ratios of 2.0 in the oxygen pulse method. When phosphate movements are eliminated by the procedures described above, the observed H+/site ratio is about 3.0. This value appears to be closer to the true H+/site ratio for the primary H+ ejection process during electron transport.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous
