Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Dec;17(12):1281-90.
doi: 10.1097/00004647-199712000-00003.

Transient middle cerebral artery occlusion by intraluminal suture: II. Neurological deficits, and pixel-based correlation of histopathology with local blood flow and glucose utilization

Affiliations

Transient middle cerebral artery occlusion by intraluminal suture: II. Neurological deficits, and pixel-based correlation of histopathology with local blood flow and glucose utilization

W Zhao et al. J Cereb Blood Flow Metab. 1997 Dec.

Abstract

We conducted a pixel-based analysis of the acute hemodynamic and metabolic determinants of infarctive histopathology in a reproducible model of temporary (2-hour) middle cerebral artery occlusion (MCAO) produced in rats by an intraluminal suture. Three-dimensional averaged image data sets of local cerebral blood flow (LCBF) and glucose utilization (LCMRglc) acquired in the companion study (Belayev et al., 1997) either at the end of a 2-hour period of MCAO or after 1 hour of recirculation were comapped (using digitized atlas-templates) with data sets depicting the frequency of histological infarction in a matched animal group (n = 8) in which 2 hours of MCAO was followed by 3-day survival, sequential neuro behavioral examinations, and perfusion-fixation and paraffin-embedding of brains for light-microscopic analysis. All rats developed marked postural-reflex and forelimb-placing deficits at 60 minutes of MCAO, signifying high-grade ischemia. Tactile placing deficits persisted during the 72-hour observation period while visual placing and postural-reflex abnormalities variably improved. Comapping of LCBF and histopathology showed that in those pixels destined to undergo infarction, LCBF measured at 2 hours of MCAO showed a sharp distributional peak centered at 0.14 mL/g/min. In 70% of pixels destined to infarct, LCBF at 2 hours of MCAO was 0.24 mL/g/min or below, and in 89% LCBF was below 0.47 mL/g/min (the upper limits of the ischemic core and penumbra, respectively, as defined in the companion study [Belayev et al., 1997]). Local cerebral glucose utilization measured at approximately 1 hour after 2 hours of MCAO was distributed bimodally in the previously ischemic hemisphere. The major peak, at 22 mumol/100g/min, coincided exactly with the distribution peak of pixels destined to undergo infarction, while in pixels with a zero probability of infarction, LCMRglc was higher by 12 to 13 mumol/100g/min. These results indicate that local blood flow at 2 hours of MCAO is a robust predictor of eventual infarction. Pixels with ischemic-core levels of LCBF (0% to 20% of control) have a 96% probability of infarction, while the fate of the penumbra is more heterogeneous: below LCBF of 0.35 mL/g/min, the probability of infarction is 92%, while approximately 20% pixels in the upper-penumbral LCBF range (30% to 40% of control) escape infarction. Our data strongly support the view that the likelihood of infarction within the ischemic penumbra is highly influenced by very subtle differences in early perfusion.

PubMed Disclaimer

Publication types

LinkOut - more resources