Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1997 Dec 9;36(49):15216-23.
doi: 10.1021/bi971891z.

Nitric oxide inhibition of lipid peroxidation: kinetics of reaction with lipid peroxyl radicals and comparison with alpha-tocopherol

Affiliations
Comparative Study

Nitric oxide inhibition of lipid peroxidation: kinetics of reaction with lipid peroxyl radicals and comparison with alpha-tocopherol

V B O'Donnell et al. Biochemistry. .

Abstract

The reaction between nitric oxide (*NO) and lipid peroxyl radicals (LOO*) has been proposed to account for the potent inhibitory properties of *NO toward lipid peroxidation processes; however, the mechanisms of this reaction, including kinetic parameters and nature of termination products, have not been defined. Here, the reaction between linoleate peroxyl radicals and *NO was examined using 2, 2'-azobis(2-amidinopropane) hydrochloride-dependent oxidation of linoleate. Addition of *NO (0.5-20 microM) to peroxidizing lipid led to cessation of oxygen uptake, which resumed at original rates when all *NO had been consumed. At high *NO concentrations (>3 microM), the time of inhibition (Tinh) of chain propagation became increasingly dependent on oxygen concentration, due to the competing reaction of oxygen with *NO. Kinetic analysis revealed that a simple radical-radical termination reaction (*NO:ROO* = 1:1) does not account for the inhibition of lipid oxidation by *NO, and at least two molecules of *NO are consumed per termination reaction. A mechanism is proposed whereby *NO first reacts with LOO* (k = 2 x 10(9) M-1 s-1) to form LOONO. Following decomposition of LOONO to LO* and *NO2, a second *NO is consumed via reaction with LO*, with the composite rate constant for this reaction being k = 7 x 10(4) M-1 s-1. At equal concentrations, greater inhibition of oxidation was observed with *NO than with alpha-tocopherol. Since *NO reacts with LOO* at an almost diffusion-limited rate, steady state concentrations of 30 nM *NO would effectively compete with endogenous alpha-tocopherol concentrations (about 20 microM) as a scavenger of LOO* in the lipid phase. This indicates that biological *NO concentrations (up to 2 microM) will significantly influence peroxidation reactions in vivo.

PubMed Disclaimer

Publication types

LinkOut - more resources