Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Dec 16;36(50):15834-40.
doi: 10.1021/bi971932r.

Cooperativity and regulation of scallop myosin and myosin fragments

Affiliations

Cooperativity and regulation of scallop myosin and myosin fragments

V N Kalabokis et al. Biochemistry. .

Abstract

Scallop heavy meromyosin (HMM) preparation obtained by a new improved method showed a Mg-ATPase activity that was activated 15-fold by calcium. The ATPase activity depended on ionic strength and reached maximum at 0.1 M without altering calcium sensitivity. The highly regulated HMM and myosin preparations showed cooperative properties not seen with unregulated subfragment 1 (S1). ATPase activity of myosin and HMM increased steeply with calcium concentration, yielding Hill coefficients about 3 and 4, respectively. Calcium binding by HMM and myosin became cooperative in the presence of ADP, AMP-PNP, or ADP.Vi yielding Hill coefficients of 1.8 and 2.8, respectively. Binding of calcium by HMM in the presence of ATP was also cooperative at physiological ionic strength, whereas at low ionic strength the data fit best to a simple binding curve. In contrast, calcium binding by unregulated S1 followed a normal binding curve and was not affected by the presence of nucleotide analogues. Calcium decreased the affinity of ADP and ADP-PNP to myosin and HMM, but had no effect on the nucleotide binding to S1. The results indicate that communication between the nucleotide and calcium binding sites requires the presence of two heads and exists only in the "off" state. We propose that in the presence of calcium, interaction between the two heads is disrupted and they act independently.

PubMed Disclaimer

Publication types

LinkOut - more resources