Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Nov 21;274(1):114-31.
doi: 10.1006/jmbi.1997.1313.

Ligand-induced conformational changes in ras p21: a normal mode and energy minimization analysis

Affiliations

Ligand-induced conformational changes in ras p21: a normal mode and energy minimization analysis

J Ma et al. J Mol Biol. .

Abstract

A normal mode and energy minimization of ras p21 is used to determine the flexibility of the protein and the origin of the conformational differences between GTP and GDP-bound forms. To preserve the integrity of the structures, a hydration shell of water molecules was included as part of the system. Certain low-frequency modes were found to have high involvement coefficients with the conformational transition between the GTP and GDP-bound structures; the involvement coefficients of some of the modes increase when the gamma-phosphate group is removed. Two unstable modes that appear in the GTP-bound structure upon deletion of the gamma-phosphate group were determined and shown to have dominant contributions in the regions of switch I and switch II; there was also a significant displacement of loop 1. The initial motion in these regions is predicted by the modes to be approximately perpendicular to the direction of the transition from the GTP-bound state to the GDP-bound state. The overall conformational change in the switch I and II regions involves rearrangements of the protein backbone within these regions, rather than rigid body motion. Differences in the low-frequency modes of the GTP and GDP-bound forms appear to play a role in ligand binding. A coupling between the helix alpha3 position and the deletion of the gamma-phosphate group may be involved in the interaction with GAP. The oncogenic mutation G12D leads to a global increase in the rigidity of the protein. Thus, the mutant is likely to have a higher barrier for the conformational change to the inactive form; this would slow the transition and could be related to its oncogenic properties.

PubMed Disclaimer

Publication types

LinkOut - more resources