Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Sep;105 Suppl 5(Suppl 5):1021-30.
doi: 10.1289/ehp.97105s51021.

Chemical characterization and reactivity of iron chelator-treated amphibole asbestos

Affiliations

Chemical characterization and reactivity of iron chelator-treated amphibole asbestos

J Gold et al. Environ Health Perspect. 1997 Sep.

Abstract

Iron in amphibole asbestos is implicated in the pathogenicity of inhaled fibers. Evidence includes the observation that iron chelators can suppress fiber-induced tissue damage. This is believed to occur via the diminished production of fiber-associated reactive oxygen species. The purpose of this study was to explore possible mechanisms for the reduction of fiber toxicity by iron chelator treatments. We studied changes in the amount and the oxidation states of bulk and surface iron in crocidolite and amosite asbestos that were treated with iron-chelating desferrioxamine, ferrozine, sodium ascorbate, and phosphate buffer solutions. The results have been compared with the ability of the fibers to produce free radicals and decompose hydrogen peroxide in a cell-free system in vitro. We found that chelators can affect the amount of iron at the surface of the asbestos fibers and its valence, and that they can modify the chemical reactivity of these surfaces. However, we found no obvious or direct correlations between fiber reactivity and the amount of iron removed, the amount of iron at the fiber surface, or the oxidation state of surface iron. Our results suggest that surface Fe3+ ions may play a role in fiber-related carboxylate radical formation, and that desferrioxamine and phosphate groups detected at treated fiber surfaces may play a role in diminishing and enhancing, respectively, fiber redox activity. It is proposed that iron mobility in the silicate structure may play a larger role in the chemical reactivity of asbestos than previously assumed.

PubMed Disclaimer

References

    1. Biochim Biophys Acta. 1982 Dec 17;719(3):501-8 - PubMed
    1. Carcinogenesis. 1995 Dec;16(12):2973-9 - PubMed
    1. J Biol Chem. 1984 Mar 25;259(6):3620-4 - PubMed
    1. Biochem J. 1985 Jan 1;225(1):259-62 - PubMed
    1. Br J Cancer. 1987 Aug;56(2):133-6 - PubMed

Publication types

LinkOut - more resources