Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Oct;23(5):359-63.
doi: 10.5271/sjweh.232.

Lead concentrations in human plasma, urine and whole blood

Affiliations
Free article

Lead concentrations in human plasma, urine and whole blood

I A Bergdahl et al. Scand J Work Environ Health. 1997 Oct.
Free article

Abstract

Objectives: Blood-lead levels (B-Pb), and to some extent urinary lead (U-Pb), are the most employed measures of lead exposure and risk. However, the small fraction of lead present in plasma (usually below 1% of that in blood) is probably more relevant to lead exposure and toxicity. Nevertheless, the lead content of plasma lead (P-Pb) has only seldom been used, mainly due to analytical limitations, which have now been overcome. We examined P-Pb in occupationally exposed subjects, as well as its relationship with B-Pb and U-Pb.

Methods: Blood samples were obtained from 145 male workers, 110 of whom were employed in lead work. After a simple dilution of plasma, P-Pb was determined by inductively coupled plasma mass spectrometry. The detection limit was 0.04 microg/l, and the imprecision was 5%.

Results: The lead concentration ranges were 0.20-37 microg/l for P-Pb, 0.9-176 microg/l (density adjusted) for U-Pb, and 9-930 microg/l for B-Pb. A close exponential relation was obtained between B-Pb and P-Pb. When B-Pb was plotted versus log P-Pb, a straight line (log P-Pb = 0.00225 x B-Pb - 0.58; r = 0.97) was obtained. Both the relation between U-Pb and P-Pb and that between U-Pb and B-Pb showed a large scattering (r = 0.78 in both cases). The relation to B-Pb appeared to be exponential, while that to P-Pb appeared to be linear.

Conclusions: The low detection limit and good precision of P-Pb determinations make it possible to use P-Pb in assessments of lead exposure and risk. Furthermore, in relative terms, P-Pb is a more sensitive measure than B-Pb, especially at high lead levels. This development is of importance for studies of exposure, possibly also for studies of risks.

PubMed Disclaimer

Publication types