Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Dec;42(6):899-908.
doi: 10.1002/ana.410420612.

Amyloid beta-protein deposition in the leptomeninges and cerebral cortex

Affiliations

Amyloid beta-protein deposition in the leptomeninges and cerebral cortex

Y Shinkai et al. Ann Neurol. 1997 Dec.

Abstract

To further investigate the process of amyloid beta-protein (Abeta) deposition, we determined, using sensitive enzyme immunoassays, the levels of Abeta40 and Abeta42 (Abetas) in the soluble and insoluble fractions of the leptomeninges (containing arachnoid mater and leptomeningeal vessels) and cerebral cortices from elderly control subjects showing various stages of Abeta deposition and from patients affected by Alzheimer's disease (AD). In both locations, insoluble Abeta levels were higher by orders of magnitude than soluble Abeta levels. Soluble Abeta levels in cortices were much lower than those in leptomeninges. In insoluble Abeta in the cortex, Abeta42 was by far the predominant species, and Abeta42 in AD cortices was characterized by the highest degree of modifications in the amino terminus. In contrast, this Abeta42 predominance was not observed in insoluble Abeta in the leptomeninges, which were found to be able to accumulate Abetas to an extent similar to that in the cortex, on a weight basis. The levels of insoluble Abeta in the leptomeninges or cortex generally correlated with the degree of cerebral amyloid angiopathy or the abundance of senile plaque, respectively. However, the presence of plaque-free cortical samples showing significant levels of insoluble Abeta42 suggests that biochemically detectable Abeta accumulation precedes immunocytochemically detectable Abeta deposition in the cortex.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources