Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Dec 19;272(51):32176-81.
doi: 10.1074/jbc.272.51.32176.

Specific, high affinity binding sites for an antifungal plant defensin on Neurospora crassa hyphae and microsomal membranes

Affiliations
Free article

Specific, high affinity binding sites for an antifungal plant defensin on Neurospora crassa hyphae and microsomal membranes

K Thevissen et al. J Biol Chem. .
Free article

Abstract

Hs-AFP1, an antifungal plant defensin from seed of the plant Heuchera sanguinea, was radioactively labeled using t-butoxycarbonyl-[35S]L-methionine N-hydroxysuccinimidyl ester, resulting in a 35S-labeled peptide with unaltered antifungal activity. [35S]Hs-AFP1 was used to assess binding on living hyphae of the fungus Neurospora crassa. Binding of [35S]Hs-AFP1 was found to be competitive, reversible, and saturable with an apparent Kd of 29 nM and a Bmax of 1.4 pmol/mg protein. [35S]Hs-AFP1 also bound specifically and reversibly to microsomal membranes derived from N. crassa hyphae with a Kd of 27 nM and a Bmax of 102 pmol/mg protein. The similarity in Kd value between binding sites on hyphae and microsomes indicates that Hs-AFP1 binding sites reside on the plasma membrane. Binding of [35S]Hs-AFP1 to both hyphae and microsomal membranes could be competed to some extent by four different structurally related plant defensins but not by various structurally unrelated antimicrobial peptides. In addition, an inactive single amino acid substitution variant of the antifungal plant defensin Rs-AFP2 from Raphanus sativus seed was also unable to displace [35S]Hs-AFP1 from its binding sites, whereas Rs-AFP2 itself was able to compete with [35S]Hs-AFP1.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources