Neuromodulation of hypoglossal motoneurons: cellular and developmental mechanisms
- PMID: 9407607
- DOI: 10.1016/s0034-5687(97)00079-0
Neuromodulation of hypoglossal motoneurons: cellular and developmental mechanisms
Abstract
Hypoglossal motoneurons (HMs) in the caudal brainstem have a respiratory-related activity pattern and contribute to control of upper airway resistance. In this review, we focus primarily on signalling mechanisms utilized by neurotransmitters to enhance HM excitability. In particular, we consider: (1) the membrane depolarization induced by a number of different putative transmitters [thyrotropin-releasing hormone (TRH), serotonin (5-HT), norepinephrine (NE)]; and (2) the inhibition of a calcium-dependent spike after hyperpolarization (AHP) by 5-HT and its effect on firing behavior. Potential functional consequences on HM behavior of these different neurotransmitter effects is discussed. In addition, we describe postnatal changes in transmitter effects and suggest potential cellular mechanisms to explain those developmental changes. Most of the data discussed are derived from in vitro electrophysiological recordings performed in preparations from neonatal and adult rats.