Receptor-activated Ca2+ influx via human Trp3 stably expressed in human embryonic kidney (HEK)293 cells. Evidence for a non-capacitative Ca2+ entry
- PMID: 9417057
- DOI: 10.1074/jbc.273.1.133
Receptor-activated Ca2+ influx via human Trp3 stably expressed in human embryonic kidney (HEK)293 cells. Evidence for a non-capacitative Ca2+ entry
Abstract
Ca2+ release from its internal stores as a result of activation of phospholipase C is accompanied by Ca2+ influx from the extracellular space. Ca2+ influx channels may be formed of proteins homologous to Drosophila Trp. At least six non-allelic Trp genes are present in the mouse genome. Full-length human, bovine, mouse, and rat cDNAs for Trp1, 3, 4, 6 have been cloned. Expression of these genes in various mammalian cells has provided evidence that Trp proteins form plasma membrane Ca2+-permeant channels that can be activated by an agonist that activates phospholipase C, by inositol 1,4, 5-trisphosphate, and/or store depletion. We have stably expressed human Trp3 (hTrp3) in human embryonic kidney (HEK)293 cells. Measurement of intracellular Ca2+ concentrations in Fura2-loaded cells showed that cell lines expressing hTrp3 have significantly higher basal and agonist-stimulated influxes of Ca2+, Mn2+, Ba2+, and Sr2+ than control cells. The increase in Ca2+ entry attributable to the expression of hTrp3 obtained upon store depletion by thapsigargin was much lower than that obtained by stimulation with agonists acting via a Gq-coupled receptor. Addition of agonists to thapsigargin-treated Trp3 cells resulted in a further increase in the entry of divalent cations. The increased cation entry in Trp3 cells was blocked by high concentrations of SKF 96365, verapamil, La3+, Ni2+, and Gd3+. The Trp3-mediated Ca2+ influx activated by agonists was inhibited by a phospholipase C inhibitor, U73122. We propose that expression of hTrp3 in these cells forms a non-selective cation channel that opens after the activation of phospholipase C but not after store depletion. In addition, a subpopulation of the expressed hTrp3 may form heteromultimeric channels with endogenous proteins that are sensitive to store depletion.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous
