Inferring species trees from gene trees: a phylogenetic analysis of the Elapidae (Serpentes) based on the amino acid sequences of venom proteins
- PMID: 9417893
- DOI: 10.1006/mpev.1997.0434
Inferring species trees from gene trees: a phylogenetic analysis of the Elapidae (Serpentes) based on the amino acid sequences of venom proteins
Abstract
Toward the goal of recovering the phylogenetic relationships among elapid snakes, we separately found the shortest trees from the amino acid sequences for the venom proteins phospholipase A2 and the short neurotoxin, collectively representing 32 species in 16 genera. We then applied a method we term gene tree parsimony for inferring species trees from gene trees that works by finding the species tree which minimizes the number of deep coalescences or gene duplications plus unsampled sequences necessary to fit each gene tree to the species tree. This procedure, which is both logical and generally applicable, avoids many of the problems of previous approaches for inferring species trees from gene trees. The results support a division of the elapids examined into sister groups of the Australian and marine (laticaudines and hydrophiines) species, and the African and Asian species. Within the former clade, the sea snakes are shown to be diphyletic, with the laticaudines and hydrophiines having separate origins. This finding is corroborated by previous studies, which provide support for the usefulness of gene tree parsimony.
Similar articles
-
Phylogenetic relationships of elapid snakes based on cytochrome b mtDNA sequences.Mol Phylogenet Evol. 2000 Apr;15(1):157-64. doi: 10.1006/mpev.1999.0725. Mol Phylogenet Evol. 2000. PMID: 10764543
-
Activity of two key toxin groups in Australian elapid venoms show a strong correlation to phylogeny but not to diet.BMC Evol Biol. 2020 Jan 13;20(1):9. doi: 10.1186/s12862-020-1578-x. BMC Evol Biol. 2020. PMID: 31931699 Free PMC article.
-
Characterization of alpha-neurotoxin and phospholipase A2 activities from Micrurus venoms. Determination of the amino acid sequence and receptor-binding ability of the major alpha-neurotoxin from Micrurus nigrocinctus nigrocinctus.Eur J Biochem. 1996 May 15;238(1):231-9. doi: 10.1111/j.1432-1033.1996.0231q.x. Eur J Biochem. 1996. PMID: 8665942
-
Different evolution of phospholipase A2 neurotoxins (beta-neurotoxins) from Elapidae and Viperidae snakes.Ann N Y Acad Sci. 1994 Mar 9;710:142-8. doi: 10.1111/j.1749-6632.1994.tb26621.x. Ann N Y Acad Sci. 1994. PMID: 8154743 Review. No abstract available.
-
Molecular evolution of toxin genes in Elapidae snakes.Mol Divers. 2006 Nov;10(4):529-43. doi: 10.1007/s11030-006-9049-x. Epub 2006 Nov 10. Mol Divers. 2006. PMID: 17096076 Review.
Cited by
-
A maximum pseudo-likelihood approach for estimating species trees under the coalescent model.BMC Evol Biol. 2010 Oct 11;10:302. doi: 10.1186/1471-2148-10-302. BMC Evol Biol. 2010. PMID: 20937096 Free PMC article.
-
Molecular evolution and phylogeny of elapid snake venom three-finger toxins.J Mol Evol. 2003 Jul;57(1):110-29. doi: 10.1007/s00239-003-2461-2. J Mol Evol. 2003. PMID: 12962311
-
Orphan Three-Finger Toxins Bind at Tissue Factor-Factor VIIa Interface to Inhibit Factor X Activation: Identification of Functional Site by Docking.TH Open. 2018 Sep 26;2(3):e303-e314. doi: 10.1055/s-0038-1672184. eCollection 2018 Jul. TH Open. 2018. PMID: 31249954 Free PMC article.
-
Accelerated exchange of exon segments in Viperid three-finger toxin genes (Sistrurus catenatus edwardsii; Desert Massasauga).BMC Evol Biol. 2008 Jul 8;8:196. doi: 10.1186/1471-2148-8-196. BMC Evol Biol. 2008. PMID: 18606022 Free PMC article.
-
Naja annulifera Snake: New insights into the venom components and pathogenesis of envenomation.PLoS Negl Trop Dis. 2019 Jan 18;13(1):e0007017. doi: 10.1371/journal.pntd.0007017. eCollection 2019 Jan. PLoS Negl Trop Dis. 2019. PMID: 30657756 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources