Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Dec;8(12):1243-7.

Regulation of P-glycoprotein expression in cyclic AMP-dependent protein kinase mutants

Affiliations
  • PMID: 9419412

Regulation of P-glycoprotein expression in cyclic AMP-dependent protein kinase mutants

M E Cvijic et al. Cell Growth Differ. 1997 Dec.

Abstract

Multidrug resistance (MDR) in cancer poses a major obstacle to the success of chemotherapy. We previously reported that cyclic AMP (cAMP)-resistant mutants of the Chinese hamster ovary and the mouse adrenal cortical carcinoma cells harboring defective regulatory (RI alpha) subunits of the cAMP-dependent protein kinase (PKA) are more sensitive than wild-type cells to chemotherapeutic agents that are substrates for P-glycoprotein. In addition, a transfectant overexpressing a mutant RI alpha cDNA showed similar increased sensitivity to these drugs. The altered drug sensitivity in the RI alpha mutants results from reduced expression of the mdr gene, suggesting that PKA may regulate its expression. In this study, we evaluated the sensitivity of several Chinese hamster ovary catalytic (C) subunit mutants to various anticancer drugs. Like the RI alpha subunit mutant, the C subunit mutants also exhibit decreased kinase activity and unresponsiveness to growth inhibition by cAMP. However, in contrast to the RI alpha subunit mutant, the C subunit mutants are not multidrug sensitive and maintain P-glycoprotein expression levels comparable to those of wild-type cells. Furthermore, the C subunit mutants display the same resistance patterns as wild-type cells to P-glycoprotein substrates, including Adriamycin, Taxol, and colchicine. No significant difference was observed in their sensitivity to non-MDR drugs, such as 5-fluorodeoxyuridine, between wild-type, RI alpha, and C subunit mutant cells. These results suggest that the increased multidrug sensitivity in the PKA mutant cells results from alteration of the RI alpha subunit and not the kinase activity, thus implying novel functions for the RI alpha subunit. Therefore, genetic alteration of the RI alpha subunit of PKA may modulate drug resistance in cancer.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources