Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1995 Sep-Oct;2(5):437-45.
doi: 10.1016/s1071-3581(05)80031-5.

Nitroimidazoles for imaging hypoxic myocardium

Affiliations
Review

Nitroimidazoles for imaging hypoxic myocardium

H W Strauss et al. J Nucl Cardiol. 1995 Sep-Oct.

Abstract

A series of radiopharmaceuticals that incorporate nitroimidazole moieties have been synthesized to detect decreased local tissue pO2. In contrast to agents that localize in proportion to perfusion, these agents concentrate in hypoxic tissue. Myocardium with an intracellular pO2 < 3 mm Hg (about 25% of normal), which has lost its contractile ability but has maintained its ability to catabolize glucose, can be localized with this imaging technique. When a nitroimidazole enters a viable cell, the molecule undergoes a series of reactions: Initially, the molecule gains a single electron by an enzymatic process in the cytoplasm to form a potentially reactive species, then in the presence of adequate intracellular oxygen levels the molecule is reoxidized. These reactions are repeated until the intact molecule diffuses back out of the cell. In myocytes with reduced oxygen concentration, the reoxidation does not take place, the reactive species appears to undergo additional reduction reactions and remains in the cell. The association of the reduced nitroimidazole and other cellular elements is not irreversible, since these agents clear from hypoxic tissue with a half-life of 4 to 8 hours. In one of the first nitroimidazoles used for in vivo imaging, fluoromisonidazole was the radiopharmaceutical. Two major problems with fluoromisonidazole are its relatively low concentration within the lesion and the need to wait several hours to permit clearance of the agent from the normoxic background tissue (contrast between lesion and background typically < 2:1 at about 90 minutes after injection). Even with high resolution positron emission tomography imaging, this combination of circumstances makes successful evaluation of hypoxic lesions a challenge. The development of single photon agents with longer physical half-lives and comparable biologic properties offer a greater opportunity for successful imaging. In 1992 technetium 99m-labeled nitroimidazoles were described that had in vivo kinetics that were potentially suitable for detection of hypoxic myocardium. Laboratory studies showed preferential binding of these agents to hypoxic myocytes and isolated hearts in vitro and to ischemic myocardial tissue in laboratory animals. Patient studies are planned to determine whether the promise of these agents in laboratory studies can be realized in clinical practice.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Nucl Med. 1993 Jun;34(6):918-24 - PubMed
    1. Br J Cancer. 1981 Apr;43(4):546-50 - PubMed
    1. Drug Metab Rev. 1988;19(1):33-62 - PubMed
    1. J Nucl Med. 1989 Mar;30(3):351-8 - PubMed
    1. J Nucl Med. 1987 Jan;28(1):76-82 - PubMed

LinkOut - more resources