Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Oct;36(10):1447-54.
doi: 10.1016/s0028-3908(97)00131-7.

Involvement of potentially distinct neurotensin receptors in neurotensin-induced stimulation of striatal [3H]dopamine release evoked by KCl versus electrical depolarization

Affiliations

Involvement of potentially distinct neurotensin receptors in neurotensin-induced stimulation of striatal [3H]dopamine release evoked by KCl versus electrical depolarization

M Heaulme et al. Neuropharmacology. 1997 Oct.

Abstract

We intended to determine whether the effect of neurotensin (NT) on K+ and electrically evoked [3H]dopamine (DA) release from rat and guinea-pig striatal slices involved different mechanisms and/or receptors. In the two species, NT and three NT agonists were found to exhibit different relative potencies to enhance K+- and electrically-evoked [3H]DA release. NT(1-13) increased [3H]DA release with EC50 values in the nanomolar range and Emax values in the range of 100% of control. NT(8-13) and Eisai hexapeptide were both as active as NT(1-13) under K+ depolarization, but did not exceed 40% of the NT(1-13) effect under electrical depolarization. In rats, when [3H]DA release was stimulated with two successive K+ depolarizations, in the presence of NT(1-13), the NT effect during the second exposure to K+ was drastically decreased, suggesting that the NT receptor was desensitized. The desensitization process was essentially observed on Emax values, EC50 values being weakly affected. Similar results were obtained in guinea pig. In contrast, with two electrical depolarizations or with two different depolarizations (K+ followed by electrical), the NT effect during the second depolarization was not significantly affected. Concerning NT antagonists, SR 48692 antagonized with IC50 values in the nanomolar range the NT(1-13) stimulated K+-evoked [3H]DA release but did not affect, up to 10(-6) M, the NT(1-13) enhancement of electrically stimulated [3H]DA release. On the contrary, SR 142948A antagonized the NT(1-13) effect on K+- and electrically-evoked [3H]DA release. In conclusion, these results suggest the possible existence of potentially distinct neurotensin receptors differentially involved in the control exerted by NT on DA release under KCl vs electrical depolarization.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources