Secondary structures and starvation-induced frameshifting
- PMID: 9427404
- DOI: 10.1046/j.1365-2958.1997.6101959.x
Secondary structures and starvation-induced frameshifting
Abstract
We have examined the effect of a downstream secondary structure (the stem-loop sequence found downstream on the MMTV gag-pro frameshift site) on frameshifting at a bacterial shifty site (U UUC AUA) that responds strongly to a isoleucine-tRNA limitation. Our findings are as follows: (i) the downstream stem-loop has little effect on frameshifting in growing, unstarved cells; (ii) the stem-loop increases the frameshifting effect of isoleucine-tRNA limitation about fourfold, and this synergism is maximal with a distance of 5-9 nucleotides between the 'hungry' AUA codon and the stem-loop; and (iii) a stem-loop of different sequence at the same position has the same effect.
Similar articles
-
On the mechanism of leftward frameshifting at several hungry codons.J Mol Biol. 1996 Mar 8;256(4):676-84. doi: 10.1006/jmbi.1996.0117. J Mol Biol. 1996. PMID: 8642590
-
Structural and functional studies of retroviral RNA pseudoknots involved in ribosomal frameshifting: nucleotides at the junction of the two stems are important for efficient ribosomal frameshifting.EMBO J. 1995 Feb 15;14(4):842-52. doi: 10.1002/j.1460-2075.1995.tb07062.x. EMBO J. 1995. PMID: 7882986 Free PMC article.
-
An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA.Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):713-7. doi: 10.1073/pnas.89.2.713. Proc Natl Acad Sci U S A. 1992. PMID: 1309954 Free PMC article.
-
A review on architecture of the gag-pol ribosomal frameshifting RNA in human immunodeficiency virus: a variability survey of virus genotypes.J Biomol Struct Dyn. 2017 Jun;35(8):1629-1653. doi: 10.1080/07391102.2016.1194231. Epub 2016 Aug 2. J Biomol Struct Dyn. 2017. PMID: 27485859 Review.
-
Prokaryotic and eukaryotic translational machineries respond differently to the frameshifting RNA signal from plant or animal virus.Virus Res. 2003 Apr;92(2):165-70. doi: 10.1016/s0168-1702(03)00042-x. Virus Res. 2003. PMID: 12686425 Free PMC article. Review.
Cited by
-
An Expanded CAG Repeat in Huntingtin Causes +1 Frameshifting.J Biol Chem. 2016 Aug 26;291(35):18505-13. doi: 10.1074/jbc.M116.744326. Epub 2016 Jul 5. J Biol Chem. 2016. PMID: 27382061 Free PMC article.
-
Programmed Deviations of Ribosomes From Standard Decoding in Archaea.Front Microbiol. 2021 Jun 4;12:688061. doi: 10.3389/fmicb.2021.688061. eCollection 2021. Front Microbiol. 2021. PMID: 34149676 Free PMC article. Review.
-
Synthesis of a bacteriophage MB78 late protein by novel ribosomal frameshifting.Gene. 2000 Aug 22;254(1-2):209-17. doi: 10.1016/s0378-1119(00)00264-x. Gene. 2000. PMID: 10974552 Free PMC article.
-
Translational recoding: canonical translation mechanisms reinterpreted.Nucleic Acids Res. 2020 Feb 20;48(3):1056-1067. doi: 10.1093/nar/gkz783. Nucleic Acids Res. 2020. PMID: 31511883 Free PMC article. Review.
-
Anticodon stem-loop tRNA modifications influence codon decoding and frame maintenance during translation.Semin Cell Dev Biol. 2024 Feb 15;154(Pt B):105-113. doi: 10.1016/j.semcdb.2023.06.003. Epub 2023 Jun 28. Semin Cell Dev Biol. 2024. PMID: 37385829 Free PMC article. Review.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources