Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jan 1;8(1):19-25.
doi: 10.1016/s0960-9822(98)70016-8.

Neurotoxic responses by microglia elicited by excitotoxic injury in the mouse hippocampus

Affiliations
Free article

Neurotoxic responses by microglia elicited by excitotoxic injury in the mouse hippocampus

A D Rogove et al. Curr Biol. .
Free article

Abstract

Background: Injury to the brain induces dramatic local changes in gene expression, cellular morphology and behavior. Activation of microglial cells occurs as an early event after central nervous system (CNS) injury, but it has not been determined whether such activation plays a causal role in neuronal death. We have investigated this question using an excitotoxin-mediated brain injury model system, in conjunction with an endogenous peptide factor (macrophage/microglial inhibiting factor, MIF) that ablates microglial contribution to the cascade.

Results: Using MIF, we inhibited the microglial activation that normally follows excitotoxic injury. In cell culture studies, we found that such inhibition blocked the rapid release of microglia-derived tissue plasminogen activator (tPA), an extracellular serine protease made by both neurons and microglia, which we had previously identified as mediating a critical step in excitotoxin-induced neuronal death. Finally, infusion of MIF into the mouse brain prior to excitotoxic insult resulted in the protection of neurons from cell death.

Conclusions: Our results demonstrate that microglia undertake a neurotoxic role when excitotoxic injury occurs in the CNS. They also suggest that the tPA released from microglia has a critical role in triggering neurodegeneration.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources