Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1998 Jan;77(1):50-9.
doi: 10.1177/00220345980770010501.

A TEM study of two water-based adhesive systems bonded to dry and wet dentin

Affiliations
Comparative Study

A TEM study of two water-based adhesive systems bonded to dry and wet dentin

B Van Meerbeek et al. J Dent Res. 1998 Jan.

Abstract

To keep the exposed collagen scaffold penetrable to resin, it has been recommended that the conditioned dentin surface be maintained in a visibly moist condition, a clinical technique commonly referred to as wet bonding. In this study, resin-dentin interfaces produced with two water-based adhesive systems--OptiBond (OPTI, Kerr) and Scotchbond Multi-Purpose (SBMP, 3M)--were compared by transmission electron microscopy, following the application of either a dry- or a wet-bonding technique. The hypothesis advanced was that the ultramorphology of the hybrid layer would differ depending on which bonding method was applied. A morphologically well-organized hybrid layer of collagen fibrils intermingled with resin in tiny interfibrillar channels was consistently formed by the OPTI system. The SBMP system was found to produce a hybrid layer with a more variable ultrastructure, less distinctly outlined collagen fibrils, and a characteristic electron-dense phase located at its surface. No major differences in hybrid layer ultrastructure were observed when the two adhesive systems investigated were bonded to either dry or wet dentin. When the adhesives were dry-bonded, no ultrastructural evidence of collapsed demineralized collagen, incompletely or not at all infiltrated by resin, could be detected. In addition, when the two adhesives were bonded to wet dentin, no signs of overwetting phenomena, that would have indicated that water was ineffectively removed, were apparent. It has been hypothesized that the amount of water provided with the hydrophilic primer solution of either of the two adhesive systems investigated suffices to re-hydrate and re-expand the gently air-dried and collapsed collagen network. Further research should be directed to determine whether this hypothesized self-rewetting effect can be extrapolated to other adhesive systems that provide water-based primers.

PubMed Disclaimer

Publication types

LinkOut - more resources