Imaging lungs using inert fluorinated gases
- PMID: 9438441
- DOI: 10.1002/mrm.1910390114
Imaging lungs using inert fluorinated gases
Abstract
Rat lungs were imaged by 19F projection MRI of hexafluoroethane, mixed with 20% oxygen to form the inhaled gas. The 3D image had 700 microm resolution, and the data took 4.3 h to acquire. Free induction decays were collected in the presence of steady magnetic field gradients in 686 different directions. To take advantage of fast relaxation (T1 = 5.9 +/- 0.2 ms), the repetition time was 5 ms. To eliminate signal loss from magnetic field inhomogeneities, data were collected within 2 ms of spin excitation (from 80 micros to 2 ms after the 42-micros pi/2 pulses). The singular value decomposition of the transform from frequency to time domain was used to obtain projections despite the absence of data during and immediately after the RF pulses. Inert fluorinated gas imaging may be less expensive than polarized noble gas imaging and is appropriate for imaging steady-state rather than transient gas concentrations.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous
