Photodynamic effect of polyethylene glycol-modified fullerene on tumor
- PMID: 9439687
- PMCID: PMC5921311
- DOI: 10.1111/j.1349-7006.1997.tb00336.x
Photodynamic effect of polyethylene glycol-modified fullerene on tumor
Abstract
Fullerence (C60) efficiently generates singlet oxygen when irradiated with light, and thus should have a photodynamic effect on tumors, if it is accumulated in the tumor tissue. To explore tumor targeting of C60, we chemically modified the water-insoluble C60 with polyethylene glycol (PEG), not only to make it soluble in water, but also to enlarge its molecular size. When injected intravenously into mice carrying a tumor mass in the back subcutis, the C60-PEG conjugate exhibited higher accumulation and more prolonged retention in the tumor tissue than in normal tissue. The conjugate was excreted without being accumulated in any specific organ. Following intravenous injection of C60-PEG conjugate or Photofrin to tumor-bearing mice, coupled with exposure of the tumor site to visible light, the volume increase of the tumor mass was suppressed and the C60 conjugate exhibited a stronger suppressive effect than Photofrin. Histological examination revealed that conjugate injection plus light irradiation strongly induced tumor necrosis without any damage to the overlying normal skin. The antitumor effect of the conjugate increased with increasing irradiation power and C60 dose, and cures were achieved by treatment with a dose of 424 micrograms/kg at an irradiation power of 107 J/cm2. These findings indicate that PEG-modified C60 is a candidate agent for photodynamic tumor therapy.
Similar articles
-
Anticancer effects of fullerene [C60] included in polyethylene glycol combined with visible light irradiation through ROS generation and DNA fragmentation on fibrosarcoma cells with scarce cytotoxicity to normal fibroblasts.Oncol Res. 2011;19(5):203-16. doi: 10.3727/096504011x12970940207805. Oncol Res. 2011. PMID: 21542456
-
Photodynamic Antitumor Activity of Fullerene Modified with Poly(ethylene glycol) with Different Molecular Weights and Terminal Structures.J Biomater Sci Polym Ed. 2011;22(1-3):297-312. doi: 10.1163/092050609X12609582066446. J Biomater Sci Polym Ed. 2011. PMID: 20557714
-
Photodynamic anti-cancer effects of fullerene [C₆₀]-PEG complex on fibrosarcomas preferentially over normal fibroblasts in terms of fullerene uptake and cytotoxicity.Mol Cell Biochem. 2014 May;390(1-2):175-84. doi: 10.1007/s11010-014-1968-8. Epub 2014 Feb 5. Mol Cell Biochem. 2014. PMID: 24496749
-
[Preparation and Evaluation of Fullerene Based Nanomedicine].Yakugaku Zasshi. 2019;139(12):1539-1546. doi: 10.1248/yakushi.19-00172. Yakugaku Zasshi. 2019. PMID: 31787641 Review. Japanese.
-
[Fullerenes in biology].Postepy Biochem. 2007;53(1):91-6. Postepy Biochem. 2007. PMID: 17718393 Review. Polish.
Cited by
-
Photoinduced electron-transfer mechanisms for radical-enhanced photodynamic therapy mediated by water-soluble decacationic C₇₀ and C₈₄O₂ Fullerene Derivatives.Nanomedicine. 2013 May;9(4):570-9. doi: 10.1016/j.nano.2012.09.005. Epub 2012 Oct 29. Nanomedicine. 2013. PMID: 23117043 Free PMC article.
-
Can nanotechnology potentiate photodynamic therapy?Nanotechnol Rev. 2012 Mar;1(2):111-146. doi: 10.1515/ntrev-2011-0005. Nanotechnol Rev. 2012. PMID: 26361572 Free PMC article.
-
Computational design of a carbon nanotube fluorofullerene biosensor.Sensors (Basel). 2012 Oct 12;12(10):13720-35. doi: 10.3390/s121013720. Sensors (Basel). 2012. PMID: 23202018 Free PMC article.
-
Fullerene C60 Penetration into Leukemic Cells and Its Photoinduced Cytotoxic Effects.Nanoscale Res Lett. 2017 Dec;12(1):40. doi: 10.1186/s11671-016-1819-5. Epub 2017 Jan 13. Nanoscale Res Lett. 2017. PMID: 28091953 Free PMC article.
-
Shining light on nanotechnology to help repair and regeneration.Biotechnol Adv. 2013 Sep-Oct;31(5):607-31. doi: 10.1016/j.biotechadv.2012.08.003. Epub 2012 Aug 21. Biotechnol Adv. 2013. PMID: 22951919 Free PMC article. Review.
References
-
- ) Foote , C. S. , Wexler , S. and Ando , S.Chemistry of singlet molecular oxygen . J. Am. Chem. Soc. , 90 , 975 – 981 ( 1968. ).
-
- ) Arbogast , J. W. , Darmanyan , A. P. , Foote , C. S. , Rubin , Y. , Diedrich , F. N. , Alvarez , M. M. , Anz , S. J. and Whetten , R. L.Photophysical properties of C60 J. Phys. Chem. , 95 , 11 – 12 ( 1991. ).
-
- ) Matsumura , Y , and Maeda , H.A new concept for macro–molecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumoragentSmancs . Cancer Res. , 46 , 6387 – 6392 ( 1986. ). - PubMed
-
- ) Maeda , H. and Matsumura , Y.Tumoritropic and lymphotropic principles of macromolecular drugs . Crit. Rev. Ther, Drug Carrier Syst. , 6 , 193 – 210 ( 1989. ). - PubMed
-
- ) Seymour , L. W.Passive tumor targeting of soluble macromolcules and drug conjugates . Crit. Rev. Ther. Drug Carrier Syst , 9 , 135 – 187 ( 1992. ). - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases