Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jan 23;273(4):2067-72.
doi: 10.1074/jbc.273.4.2067.

Identification of the active site nucleophile in jack bean alpha-mannosidase using 5-fluoro-beta-L-gulosyl fluoride

Affiliations
Free article

Identification of the active site nucleophile in jack bean alpha-mannosidase using 5-fluoro-beta-L-gulosyl fluoride

S Howard et al. J Biol Chem. .
Free article

Abstract

Mannosidases play a key role in the processing of glycoproteins and thus are of considerable pharmaceutical interest and indeed have emerged as targets for the development of anti-cancer therapies. Access to useful quantities of the mammalian enzymes has not yet been achieved; therefore, jack bean mannosidase, a readily available enzyme, has become the model system. However, the relevance of this enzyme has not been demonstrated, nor is anything known about the active site structure of this, or any other, mannosidase. Hydrolysis by this enzyme occurs with net retention of sugar anomeric configuration; thus, a double displacement mechanism involving a mannosyl-enzyme intermediate is presumably involved. Two new mechanism-based inhibitors, 5-fluoro-alpha-D-mannosyl fluoride and 5-fluoro-beta-L-gulosyl fluoride, which function by the steady state trapping of such an intermediate, have been synthesized and tested. Both show high affinity for jack bean alpha-mannosidase (Ki' = 71 and 86 microM, respectively), and the latter has been used to label the active site nucleophile. The labeled peptide present in a peptic digest of this trapped glycosyl-enzyme intermediate was identified by neutral loss scans on an electrospray ionization triple quadrupole mass spectrometer. Comparative liquid chromatographic/mass spectrometric analysis of peptic digests of labeled and unlabeled enzyme samples confirmed the unique presence of this peptide of m/z 1180.5 in the labeled sample. The label was cleaved from the peptide by treatment with ammonia, and the resultant unlabeled peptide was purified and sequenced by Edman degradation. The peptide identified contained only one candidate for the catalytic nucleophile, an aspartic acid. This residue was contained within the sequence Gly-Trp-Gln-Ile-Asp-Pro-Phe-Gly-His-Ser, which showed excellent sequence similarity with regions in mammalian lysosomal and Golgi alpha-mannosidase sequences. These mammalian alpha-mannosidases belong to family 38 (or class II alpha-mannosidases) in which the Asp in the above sequence is totally conserved. This finding therefore assigns jack bean alpha-mannosidase to family 38, validating it as a model for other pharmaceutically interesting enzymes and thereby identifying the catalytic nucleophile within this family.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources