Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jan 23;273(4):2169-73.
doi: 10.1074/jbc.273.4.2169.

Apoptosis triggered by 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine is prevented by increased expression of CTP:phosphocholine cytidylyltransferase

Affiliations
Free article

Apoptosis triggered by 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine is prevented by increased expression of CTP:phosphocholine cytidylyltransferase

I Baburina et al. J Biol Chem. .
Free article

Abstract

A HeLa cell line was constructed for the regulation of CTP:phosphocholine cytidylyltransferase (CCT) expression via a tetracycline-responsive promoter to test the role of CCT in apoptosis triggered by exposure of cells to the antineoplastic phospholipid 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (ET-18-OCH3). Basal CCT expression in the engineered HeLa cell line was the same as in control HeLa cells lines, and CCT activity and protein were elevated 25-fold following 48 h of induction with doxycycline. Increased CCT expression prevented ET-18-OCH3-induced apoptosis. Acylation of exogenous lysophosphatidylcholine circumvented the requirement for CCT activity by providing an alternate route to phosphatidylcholine, and heightened CCT expression and lysophosphatidylcholine supplementation were equally effective in reversing the cytotoxic effect of ET-18-OCH3. Neither CCT overexpression nor lysophosphatidylcholine supplementation allowed the HeLa cells to proliferate in the presence of ET-18-OCH3, indicating that the cytostatic property of ET-18-OCH3 was independent of its effect on membrane phospholipid synthesis. These data provide compelling genetic evidence to support the conclusion that the interruption of phosphatidylcholine synthesis at the CCT step by ET-18-OCH3 is the primary physiological imbalance that accounts for the cytotoxic action of the drug.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources