Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jan 23;273(4):2368-73.
doi: 10.1074/jbc.273.4.2368.

Direct real time observation of base flipping by the EcoRI DNA methyltransferase

Affiliations
Free article

Direct real time observation of base flipping by the EcoRI DNA methyltransferase

B W Allan et al. J Biol Chem. .
Free article

Abstract

DNA methyltransferases are excellent prototypes for investigating DNA distortion and enzyme specificity because catalysis requires the extrahelical stabilization of the target base within the enzyme active site. The energetics and kinetics of base flipping by the EcoRI DNA methyltransferase were investigated by two methods. First, equilibrium dissociation constants (KDDNA) were determined for the binding of the methyltransferase to DNA containing abasic sites or base analogs incorporated at the target base. Consistent with a base flipping mechanism, tighter binding to oligonucleotides containing destabilized target base pairs was observed. Second, total intensity stopped flow fluorescence measurements of DNA containing 2-aminopurine allowed presteady-state real time observation of the base flipping transition. Following the rapid formation of an enzyme-DNA collision complex, a biphasic increase in total intensity was observed. The fast phase dominated the total intensity increase with a rate nearly identical to k(methylation) determined by rapid chemical quench-flow techniques (Reich, N. O., and Mashoon, N. (1993) J. Biol. Chem. 268, 9191-9193). The restacking of the extrahelical base also revealed biphasic kinetics with the recovered amplitudes from these off-rate experiments matching very closely to those observed during the base unstacking process. These results provide the first direct and continuous observation of base flipping and show that at least two distinct conformational transitions occurred at the flipped base subsequent to complex formation. Furthermore, our results suggest that the commitment to catalysis during the methylation of the target site is not determined at the level of the chemistry step but rather is mediated by prior intramolecular isomerization within the enzyme-DNA complex.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources