Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jan 15;58(2):362-6.

Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells

Affiliations
  • PMID: 9443418

Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells

H Sheng et al. Cancer Res. .

Abstract

Previously, we have shown that forced expression of prostaglandin endoperoxide synthase-2 [also called cyclooxygenase (COX) 2] leads to inhibition of programmed cell death in intestinal epithelial cells. More recently, we have demonstrated that growth of human colonic cancer xenografts is inhibited by treatment with a highly selective COX-2 inhibitor in tumors that express COX-2 (HCA-7) but not in those that lack COX-2 expression (HCT-116). To explore the biochemical mechanisms involved in these effects, we have evaluated the role of COX-2-derived eicosanoid products on programmed cell death in human colon cancer cells. Here we report that PGE2 treatment of human colon cancer cells leads to increased clonogenicity of HCA-7, but not HCT-116 cells. Treatment with a highly selective COX-2 inhibitor (SC-58125) decreases colony formation in monolayer culture and this growth inhibition was reversed by treatment with PGE2. Additionally, PGE2 inhibits programmed cell death caused by SC-58125 and induces Bcl-2 expression, but did not affect Bcl-x or Bax expression in human colon cancer (HCA-7) cells. Therefore, decreased cell death caused by PGE2 would enhance the tumorigenic potential of intestinal epithelial cells. Thus, these results may help to explain a component of the mechanism by which COX inhibitors prevent colorectal cancer in humans.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources