Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jan;50(1):99-106.
doi: 10.1212/wnl.50.1.99.

Multiple mtDNA deletions features in autosomal dominant and recessive diseases suggest distinct pathogeneses

Affiliations

Multiple mtDNA deletions features in autosomal dominant and recessive diseases suggest distinct pathogeneses

R Carrozzo et al. Neurology. 1998 Jan.

Abstract

Multiple mitochondrial DNA (mtDNA) deletions have been described in patients with autosomal dominant progressive external ophthalmoplegia (AD-PEO) and in autosomal recessive disorders including mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) and autosomal recessive cardiomyopathy ophthalmoplegia (ARCO). The pathogenic bases of these disorders are unknown. We studied three patients with AD-PEO and three patients with autosomal recessive (AR)-PEO (two patients with MNGIE and one patient with ARCO). Histochemistry and Southern blot analyses of DNA were performed in skeletal muscle from the patients. Muscle mtDNA was used to characterize the pattern and amounts of the multiple mtDNA rearrangements; PCR analysis was performed to obtain finer maps of the deleted regions in both conditions. The patients with AD-PEO had myopathic features; the patients with AR-PEO had multisystem disorders. The percentage of ragged-red and cytochrome c oxidase-negative fibers tended to be higher in muscle from the patients with AD-PEO (19% +/- 13.9, 29.7 +/- 26.3) than in muscle from the patients with AR-PEO (1.4% +/- 1.4, 3.3% +/- 3.2; p < 0.10). The sizes of the multiple mtDNA deletions ranged from approximately 4.0 to 10.0 kilobases in muscle from both groups of patients, and in both groups, we identified only deleted and no duplicated mtDNA molecules. Patients with AD-PEO harbored a greater proportion of deleted mtDNA species in muscle (31% +/- 5.3) than did patients with AR-PEO (9.7% +/- 9.1; p < 0.05). In the patients with AD-PEO, we identified a deletion that included the mtDNA heavy strand promoter (HSP) region, which had been previously described as the HSP deletion. The HSP deletion was not present in the patients with AR-PEO. Our findings show the clinical, histologic, and molecular genetic heterogeneity of these complex disorders. In particular, the proportions of multiple mtDNA deletions were higher in muscle samples from patients with AD-PEO than in those from patients with AR-PEO.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources