Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1998 Jan;26(1):1-4.

Effect of common organic solvents on in vitro cytochrome P450-mediated metabolic activities in human liver microsomes

Affiliations
  • PMID: 9443844
Comparative Study

Effect of common organic solvents on in vitro cytochrome P450-mediated metabolic activities in human liver microsomes

N Chauret et al. Drug Metab Dispos. 1998 Jan.

Abstract

In this study, we report the effect of methanol, dimethyl sulfoxide (DMSO), and acetonitrile on the cytochrome P450 (P450)-mediated metabolism of several substrates in human liver microsomes: phenacetin O-deethylation for P4501A2, coumarin 7-hydroxylation for P4502A6, tolbutamide hydroxylation for P4502C8/2C9, S-mephenytoin 4'-hydroxylation for P4502C19, dextromethorphan O-demethylation for P4502D6, chlorzoxazone 6-hydroxylation for P4502E1, and testosterone 6beta-hydroxylation for P4503A4. DMSO was found to inhibit several P450-mediated reactions (2C8/2C9, 2C19, 2E1, and 3A4) even at low concentrations (0.2%). There was no measurable effect on the catalytic activity of the various P450s when methanol was present at levels </=1%, except for P4502C8/9 and 2E1. Acetonitrile did not noticeably change the catalytic activity of the P4502C8/2C9, 2C19, 2D6, and 2E1 enzymes at concentrations </=1%. It was found that the content level of the organic solvents should be kept lower than 1% because, for all three solvents, a concentration of 5% strongly affected the metabolism of the various probes. These findings should be taken into consideration when designing in vitro metabolism studies of new chemical entities.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources